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Abstract—Work stealing is a popular solution to perform dy-
namic load balancing of irregular computations, both for shared
memory and distributed memory systems. While shared memory
performance of work stealing is well understood, distributing
this algorithm to several thousands of nodes can introduce new
performance issues. In particular, most studies of work stealing
assume that all participating processes are equidistant from each
other, in terms of communication latency.

This paper presents a new performance evaluation of the
popular UTS benchmark, in its work stealing implementation, on
the scale of ten thousands of compute nodes. Taking advantage of
the physical scale of the K Computer, we investigate in details the
performance impact of communication latencies on work stealing.
In particular, we introduce a new performance metric to assess
the time needed by the work stealing scheduler to distribute work
among all processes. Using this metric, we identify a previously
overlooked issue: the victim selection function used by the work
stealing application can severely impact its performance at large
scale. To solve this issue, we introduce a new strategy taking
into account the physical distance between nodes and achieve
significant performance improvements.
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I. INTRODUCTION

The current petascale supercomputers are in majority com-
posed of multicore, shared memory nodes, linked together
by a high speed network. As architectures evolves, both the
number of cores inside a compute node and the number of
these nodes in such systems grow. As an example, the K
Computer, ranked third in the TOP500 of November 2012,
is composed of more than 80,000 compute nodes, each with 8
cores. Distributing computations, in particular irregular ones,
at such scale requires increasingly complex and dynamic load
balancing systems.

Work stealing [1] is a provably efficient scheduling algo-
rithm for such distributed, dynamic load balancing require-
ments. It is becoming increasingly popular, both for shared
memory systems (intra-node load balancing) and in distributed
settings (inter-node load balancing). The performance of work
stealing in shared memory in particular is the subject of a large
body of work, both theoretical and experimental [1]–[6].

Unfortunately, while the shared memory issues of work
stealing like locality or lock contention are well understood,
scaling such scheduling algorithm to large distributed systems
introduces new ones. For example, standard message passing

programming models might require that a worker stop ad-
vancing the computation to answer steal requests from others,
thus slowing down the application. Distributed termination
detection is another well studied issue. In this paper, we will
focus on a previously overlooked issue in High Performance
Computing settings: the impact of large scale latencies on load
balancing performance.

Using the publicly available, MPI-based implementation
of the Unbalanced Tree Search benchmark, we evaluate the
performance of work stealing at the scale of several thou-
sands compute nodes. Interestingly, at these scales, allocating
several MPI processes by compute node results in a worse
performance than using a single process per node for this im-
plementation. Studying the problem further, this paper makes
the following contributions.

First, we introduce a metric to study the time needed by the
work stealing algorithm to distribute work among processes.
Based on a lightweight trace of the scheduler, this scheduling
latency helps us compare work distribution strategies. Second,
we demonstrate that by changing the way a victim is chosen
during work stealing, taking into account latencies between
nodes, we can mitigate work distribution issues and improve
significantly the performance of the benchmark. Finally, to the
best of our knowledge, we provide the first performance com-
parison between different process allocations strategies at the
scale of several thousands compute nodes for work stealing,
and the first use of latency-conscious victim selection at this
scale. We will also demonstrate that even a simple, portable
implementation of work stealing can perform efficiently at this
very large scale.

The next section presents the UTS benchmark we used
in this paper, details its work stealing implementation and
motivates further our study. Section III introduces our new
measure of work stealing performance and its use on the ref-
erence version of UTS. In Section IV, we study two alternative
victim selection schemes for this benchmark and demonstrate
significant performance improvements. These improvements
are discussed further in Section V, using additional traces.
We also briefly discuss in this section the impact of work
granularity on these improvements. We conclude this paper
by a review of related works in Section VI and suggesting
future experiments in Section VII.



II. THE UTS BENCHMARK

For our study, we chose to analyze the UTS (Unbalanced
Tree Search) Benchmark. This benchmark became popular
in recent years to evaluate dynamic load balancing imple-
mentations, both in shared memory and distributed memory
frameworks. First introduced by Prins et al. [7] and then
formalized by Olivier et al. [8] UTS is, as its name suggests,
an irregular application. The benchmark is designed to perform
the parallel traversal of a randomly generated unbalanced tree,
counting the total number of nodes.

The input tree is implicit: each node in the tree contains
all the information required to generate its children. Thus,
each process involved in the computation is responsible for
the generation of a part of the tree, managing nodes in a local
stack. The shape, size and depth of the tree are controlled
by a set of input parameters to the benchmark, and for a
set of parameters, the same tree will always be generated no
matter the underlying hardware or language. This is achieved
by using SHA hashes for random child generation. Moreover,
dynamic load balancing is required during execution, as only
one process start with the root of the tree, and the tree is
heavily unbalanced. This imbalance is created by the relative
short depth of generated trees compared to their size (billions
of nodes with a depth in the order of ten for example) and
the exact child generation process. For example, UTS is able
to generate binomial trees. In such trees, with parameters m
and q, a node generate m children with probability q and
0 with probability 1 − q. Thus, while all nodes have the
same expected number of children, subtrees will vary greatly
in size, requiring frequent load balancing between processes.
This benchmark was used in several studies to evaluate load
balancing frameworks, and work stealing in particular [7]–
[10].

A. Work Stealing Implementation

The portable nature of the tree generation algorithm of
UTS allowed several implementations, in different languages
to exist. In the remainder of this paper, we will use the public
implementation [11] using MPI with work stealing1. While
other studies demonstrated good performance and scalability
of UPC and X10 implementations of this benchmark, this
MPI version is the most portable one. Indeed, it only requires
version 2 of the MPI standard. It is also a very simple
implementation, making the modifications appearing latter in
this paper easier.

This implementation of UTS follows the general structure
of any work stealing application. When work is available, a
process retrieve a node from its stack. This node’s data is
then used to compute its children, that are pushed into the
stack. If no work is available, a victim process is selected,
and work is fetched from its stack. This process continues until
all work is exhausted. Such condition is detected by a token-
ring distributed termination algorithm. Algorithm 1 resumes
this behavior. Like most of the UTS implementations, our

1mpi_workstealing.c in the source distribution.

reference program also exhibits several distinguishing features.
First, this work stealing implementation does not use Cilk-
like [4] continuations. Instead of managing tasks (function and
data), the process only manipulate work items (tree nodes).
This reduces the overhead associated with task creation and
scheduling.

Second, work items are managed in chunks. In this applica-
tion, all work items are of the same type (node in the tree) and
the same size. Thus, the underlying implementation allocates
memory for groups of nodes instead of per node to limit
memory management overhead. These chunks also represent
the steal granularity: a thief will steal a single chunk of nodes
instead of a single node. Chunks also behave like a private
work queue: if there is only one incomplete chunk in the stack
of a process, no work can be stolen, as the first chunk is always
considered private. While a large chunk size might thus limit
work availability, previous studies [7], [8] have demonstrated
significant performance improvements due to these chunks in
UTS. While the size of a chunk can be configured, we will
use the default one of 20 nodes per chunk for the remainder of
this paper. The authors of UTS have previously stated that this
size provides good performance on a wide range of systems.

Third, this implementation does not respect the work-first
principle. Indeed, a process stealing work will in fact post
a request to its victim by a message, and the victim will
stop working on its queue to package work and send it to
the stealer. The performance overhead of this implementation
choice is mitigated by the use of asynchronous communication
primitives. A multithreaded solution, using one thread for com-
munication and one for work, with lockless task management
could furthermore alleviate this issue, but this implementation
avoids these optimizations in favor of simplicity.

if rank = 0 then
PUSH(stack,root)

end if
while not finished do

while node← GET(stack) do
while child← NEXTCHILD(node) do

PUSH(stack,child)
end while

end while
while stack is empty do

v ← SELECTVICTIM
STEAL(victim)

end while
end while

Fig. 1. Schematic view of the UTS work stealing implementation.

Finally, victim selection is deterministic. This last point is
perhaps the most surprising one. Indeed, traditional work steal-
ing assumes that victims are selected following an uniform
random distribution. Most theoretical proofs of the efficiency
of work stealing also rely on this assumption [1], [3]. However,
all the implementations provided in the public source code
release of UTS use a deterministic scheme. A process with



rank i will choose as its first victim its neighbor (rank i + 1
mod number_of_processes). Subsequent steals will choose
the next neighbor in a round-robin fashion. Notice that a
successful steal does not impact this choice: the next search
for work will start at the neighbor of the last victim. Still, we
will see in the next subsection that this deterministic choice
is reasonable at small scale. We should also mention that this
observation motivated in part the experiments of this paper.

B. Reference Performance Evaluation

We evaluate in this subsection the performance of this
reference implementation, both at small and large scales.

All experiments in the remainder of this paper were per-
formed on the K Computer [12]. It contains over 80 000
compute nodes, each composed of a single SPARC processor
chip and 16 GiB of memory. The processor, a SPARC64
VIIIfx, was specifically designed for this system. This chip is
produced by Fujitsu using a 45-nm process and is composed
of 8 cores operating at 2 GHz for a peak performance of 128
GFLOPS [13]. It is an extended version of the SPARC-V9
architecture targeted at high performance computing. Nodes
are connected by a 6 dimensional mesh torus called Tofu [14].
The compute nodes run a custom version of Linux. Both the
compiler and the MPI communication library are provided
by Fujitsu and contain platform-specific optimizations. Unless
specified otherwise, we used the timing measurements (and
additional statistics) already reported by the UTS benchmark.
As the K Computer contains an impressive amount of compute
nodes, we can evaluate UTS both when using all cores of
a compute node and when using only one MPI process per
node. The job scheduler on the K Computer was responsible
for physical node allocation, and tends to distribute nodes in a
3D rectangle minimizing the average number of hops between
processes.

Figure 2 presents the efficiency of our reference benchmark
between 8 and 128 MPI processes. The figure lists this perfor-
mance for 3 distinct process allocations. The setup named 1/N
allocates 1 MPI process per compute node. The setup named
8RR allocates 8 MPI processes per node, using round robin
numbering (processes i, i+8, i+16, . . . are on the same node).
The last allocation, 8G, groups the first 8 processes on the first
compute node, the next 8 on the next node and so on. For this
experiment, a binomial tree named T3XXL was used as input.
This tree is recommended by the UTS creators for this range
of MPI processes and was used in other studies [8]. The exact
parameters of this tree are displayed in Table I.

Figure 3 presents the speedup of this same benchmark
between 1024 and 8192 MPI Processes. To ensure enough
work was available, we choose another binomial tree (T3WL).
Its characteristics are also reported in Table I. Unfortunately,
due to runtime limits of the job scheduler, the runtime of
UTS with this tree and a single MPI process could not be
measured directly (it exceeds a day). Thus it was extrapolated
from the speed, in node searched per second, of the previous
input tree search. We rely on the assumption that all single
MPI process executions, for the same type of generated trees,
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Fig. 2. Efficiency of the reference MPI Workstealing implementation between
8 and 128 MPI processes with various process allocations.
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Fig. 3. Speedup of the reference MPI workstealing implementation between
1024 and 8192 MPI processes.

should have the same speed. Together, these two figures
demonstrate that this UTS implementation performs very well
for small numbers of MPI processes, but does not scale
past 2048 nodes. Additionally, it appears that the benchmark
performance is severely impacted by the way processes are
distributed among compute nodes. In particular, allocating
successive ranks to different compute nodes results in the
worse performance observed. Indeed, the deterministic round
robin victim selection is in direct conflict with the MPI
process allocation in this case. These results are in line with
previous performance studies of UTS, that demonstrated good
scalability up to 1024 compute nodes and limited performance
for more processes than that [10].

III. MEASURING LOAD BALANCING EFFICIENCY

To understand the previous performances, we detail in this
section a metric to measure load balancing efficiency.

The role of a dynamic load balancing scheme is to maximize
the amount of processes having work at any given time. Thus,
if a problem is comprised of enough work items, the state of



Name Tree Type t r b m q Tree Size
T3XXL Binomial 0 316 2000 2 0.499995 2793220501
T3WL Binomial 0 559 2000 2 0.4999995 157063495159

TABLE I
UTS INPUT TREES PARAMETERS

an application should roughly be separated in three phases: the
starting phase where work is distributed to all processes, the
finishing phase during which work becomes scarce and the
number of active processes decreases and the middle phase
for which most processes are processing work. Of course, if
work generation is irregular, as with UTS, balancing is also
needed during the middle phase, but an efficient framework
should be able to maintain a reasonable amount of processes
busy. This intuition drives the definition of our performance
metric. If one was to trace the active and idle phases of each
process participating in the computation, it should be possible
post-mortem to determine the number of active processes at
any time during execution of the application.

We define here active phases as periods of time during
which a process’s stack contains work. Thus, in the chosen
UTS implementation, all the time where a process is gen-
erating new nodes or handling MPI operations in between,
(responding to steal requests for example) count as active.
Similarly, a process is inactive if it does not have work locally.
It should be noted that with such definition, most types of load
balancing operations can be counted in either type of phase.
Assuming there exists a trace of all processes indicating the
time of each transition from one type of phase to the other,
with the starting time of the application as t = 0, we now
define the following metrics.

First, let workers(t) be the number of processes in an active
phase at time t. From this number we derive the maximum
number of workers at any given time during execution Wmax

and an occupancy ratio O(t) = workers(t)
N , N being

the number of processes executing the application. Second,
let the starting latency be SL(x) = min(t,O(t)=x)

T , with T
the total execution time of the application. This measure
computes, for a given occupancy ratio, the first time it was
exceeded during execution and represent it as a ratio of the
total execution. Similarly, we define the ending latency as
EL(x) = T−max(t,O(t)=x)

T . Intuitively, the starting latency
gives us the speed, relative to the total execution time of the
application, at which a number of processes becomes active.
The ending latency reflects a similar idea: how far away in
the execution the framework is able to maintain a number
of processes active. As an example, an execution where the
first time 10% of the processes have work happens 5% of the
execution time after beginning has SL(10%) = 5%.

We modified the reference implementation to trace the
necessary information and computed these latencies for the
two 1/N executions in the previous section. As the trace only
contains a time and the new state at each phase transition, it
is lightweight. No significant change in execution time was
detected. Starting times for each processes were recorded and
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Fig. 4. Starting and Ending latencies for an execution of the reference
implementation with 128 MPI processes, 1 processes per node.
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Fig. 5. Starting and Ending latencies for an execution of the reference
implementation with 8192 MPI processes, 1 process per node. Data is limited
to latencies lower than 10%.

the trace modified to account for clock skew. The figures 4
and 5 present these latencies. The former presents starting
and ending latencies up to an occupancy of 90% for the
execution of UTS over 128 MPI processes. The latter is a
partial rendering of these latencies for an execution using 8192
MPI processes: we limit the graphic to latencies under 10%
of the execution time. Note that based on our analysis, this
particular execution never exceeded 3538 processes (43% of
occupancy) with a starting latency of 52.5% and an ending one
of 47.5%. As we can see, for the execution over 128 processes,
the work stealing process is able to provide most workers with
nodes shortly after the start of the execution, and almost to the



end of it: both latencies for an occupancy of 90% are under
1% of the execution time. On the contrary, the large execution
struggle to provide work to most workers: only 12.5% of the
processes are active after 10% of the execution.

IV. ALTERNATIVE VICTIM SELECTIONS

A possible explanation for this poor performance of the
reference UTS implementation at large scale is the determin-
istic victim selection. As only process 0 has work when the
application starts, looping over the ranks in round robin in
search for work appears to be highly inefficient. Moreover,
most proofs of work stealing demonstrated its optimality
with a random victim selection process. In this section, we
investigate the performance of this random victim selection
strategy.

A. Traditional Random Selection

We define the random victim selection as the process of
choosing with a uniform random distribution over the ranks
of all other MPI processes one victim to steal. The process is
repeated as long as needed, without modification, until work
is found.

We modified the reference implementation to use this victim
selection process. The modification is simple, only 5 lines
of code were changed. This version of the benchmark is
named Rand in the remainder of this paper. Figure 6 presents
performance results for this implementation, with the same
experimental setup than previously.
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Fig. 6. Speedup of the MPI workstealing implementation with random
selection, between 1024 and 8192 MPI processes. The reference performance
(in 1/N) is also reported.

As we can see, using random selection results in better
performance when allocating only one process per node,
but does not improve the performance of executions using
all the cores for 8192 MPI processes. Figure 7 traces the
number of failed steals for these runs. This figure confirms
that the number of failed steals decreases significantly by
using a random victim selection strategy, resulting in better
performance overall.
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Fig. 7. Number of failed steals for the MPI workstealing implementation
with random selection, between 1024 and 8192 MPI processes.

B. Skewing the Distribution

While we just showed that traditional random selection
strategy performs better than the deterministic one, it might
still be possible to improve this performance. Indeed, the major
advantage of a random selection is to, on average, lower the
number of steals required to find work. However, in modern
supercomputers, not every steal attempt takes the same time.
For example, communication between two MPI processes on
the same CPU, or on the same blade will potentially be
faster than across racks (more network hops are necessary).
Variations in response time for a steal request could explain
why using all the cores of a node decreases the performance
of the application.

Our experimental platform is the K Computer. The physical
organization of the computer is as follows. First, compute
nodes are in groups of four on a blade. Communication across
the blade use a dedicated transport. Then, 3 blades are joined
together, forming a 2x3x2 cube. This cube represent 3 of the 6
dimensions of the Tofu network. Finally, these cube are joined
in a 3D mesh torus, with one dimension for the rack (8 cubes
are in the same rack), and two across racks. As each of these
levels use different network links, latencies between nodes in
the same blade are lower than inside the cube or across racks.
Furthermore, the number of compute nodes inside a rack (only
96) means that an allocation of 8192 nodes can easily span
across more than 80 racks, and in practice we observed that a
communication between two processes can go through more
than 10 hops.

To reflect these variations in response times for a steal, we
designed a random selection strategy using a biased distribu-
tion. The idea is the following: while preserving the ability
to steal any process, weight the probability of one process
stealing another by the distance between those two. The farther
a process is, the lower the probability of being chosen. As
the Fujitsu MPI implementation provide extensions to query
the 6D coordinates in the Tofu network of any MPI rank,
we used the Euclidean distance between nodes to weight the



probability. Thus, let p(i, j) the probability of rank i stealing
rank j ; xi, yi, zi, ai, bi, ci be the coordinates in the Tofu
network of rank i and e(i, j) the euclidean distance between
ranks i and j:

w(i, j) =

{
1

e(i,j) if e(i, j) 6= 0

1 if e(i, j) = 0

p(i, j) =
w(i, j)

j 6=i∑
j

w(i, j)

Figure 8 gives the probability distribution function for an
actual deployment of a 1024 nodes job (one process per node)
on the K Computer. We modified the reference implementation
to use these probabilities for victim selection. The modification
uses the GNU Scientific Library [15] for random number
generation and general discrete distribution sampling. This
version of the benchmark is named Tofu for the remainder
of this paper. We report the resulting performance in figure 9.
As this figure shows, the performance of our benchmark is
improved by this new victim selection strategy. Unfortunately,
while all allocations strategies perform better than with the
classical random selection for the same allocation, only the
allocation of 1 process per node performs better than the
previous best.
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Fig. 8. Probability distribution function of p(0,x) for a example deployment
on the K Computer over 1024 MPI processes, 1 per node.

To demonstrate further the efficiency of this strategy, fig-
ure 10 reports the average duration of a work discovery session
on the same configuration. A work discovery session starts
when a process exhaust its work and ends with either work
in the queue or application termination. As we can see, the
topology-specific victim selection strategy results in much
faster work discovery.

C. Stealing Half the Work

We would like to point out again that the reference imple-
mentation only steals one chunk at a time. However, several
studies have demonstrated that stealing half the work of the
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Fig. 9. Speedup of the MPI workstealing implementation with skewed
distribution, between 1024 and 8192 MPI processes. The performance of
random selection (in 1/N and 8G) is also reported for reference.
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Fig. 10. Average duration a of work discovery session of the MPI worksteal-
ing implementation with skewed distribution, between 1024 and 8192 MPI
processes. Statistics for random selection and the reference implementation is
also reported for reference.

victim is an optimal strategy [2], or at least provide good
performance. The reason is very intuitive: stealing half the
work make it possible for a thief to be stolen himself as soon
as it retrieves work, making the overall work availability better.
To reflect this, we modified further our various implementa-
tions so that steals transfer half the chunks instead of just one.
Figure 11 presents the performance of these versions on 8192
nodes, allocating one process per node.

This figure confirms our assumptions. While none of the
previous modifications impact meaningfully the performance
of UTS at small scale, the combined use of our skewed
victim selection and half-stealing performs 3 times better than
the original. More importantly, this last version is able to
speedup up to 8192 MPI processes, with all process allocation
strategies, while it was not the case for the original version
after 2048 processes. To further understand the performance
differences between those two versions we compare in Fig-
ure 12 their starting latencies.
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Fig. 11. Speedup of the MPI workstealing implementations stealing half the
work, between 1024 and 8192 MPI processes.
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Fig. 12. Comparison of starting latencies between the reference implemen-
tation and the optimal one, with 8192 MPI processes, 1 process per node.
Tracing data was limited to the first 5000 phases of each process.

As we expected, while the reference implementation is
struggling to provide work to most processes during the whole
execution, the optimized version achieves a higher occupancy
significantly faster. Figure 13 also confirms that the optimized
version maintains a high occupancy until late in the execution.

V. FURTHER DISCUSSION

In this section, we first detail further how the final version
of the benchmark (skewed victim selection and half stealing)
performs better. In particular, we look at search time and failed
steal information. Secondly, we discuss the possibility that
these performances are impacted by work granularity: how
much compute time each node of the tree (work item) takes
to process.

A. Search Time and Failed Steal

We now look closer into the performance of this skewed
victim selection. Two metrics reported by UTS are of interest:
the average search time and the number of failed steals. The
search time is defined by UTS as the portion of the execution
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Fig. 13. Comparison of ending latencies between the reference implemen-
tation and the optimal one, with 8192 MPI processes, 1 process per node.
Tracing data was limited to the last 5000 phases of each process.

time a process was waiting for a steal answer (work or no
work). The number of failed steals report the number of steal
requests that were answered negatively.

We report in Figure 14 the average search time of our
optimized benchmarks (skewed victim selection and steal
half) and the original values, while Figure 15 displays the
accumulated number of failed steals. As expected, taking into
account network latencies and and stealing half the chunks
of the victim greatly diminishes the time spent searching for
work. The number of steals failing also decreases, as a result
of better work distribution.
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Fig. 14. Average search time of a process. Comparison between original
version (1/N allocation) and skewed victim selection with half stealing for a
number of processes from 1024 to 8192.

B. Impact of Work Granularity

All the experiments presented before are configured with
the same work granularity: when a node is created by UTS,
a single round of SHA is computed for its id. This same id
is latter used to compute its number of children. On the K
Computer, UTS is able to process an average of 970000 nodes
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Fig. 15. Number of failed steals. Comparison between original version (1/N
allocation) and skewed victim selection with half stealing for a number of
processes from 1024 to 8192.

per second. Thus, a single node provide little compute time,
relative to the average time it takes the application to steal
work. As a reference, an execution of the "Tofu Half 1/N"
version on 8192 nodes averages, on each MPI rank, 6800 work
discovery sessions, with 4 ms per session in the span of a 75
seconds execution time. If we assume that all active sessions
are of the same length, it amounts to only 11 ms between two
inactive ones: a steal only provides enough work for 3 times
the time it takes to make it.

To study this question further, we compare in figure 16 the
performance of "Rand Half 1/N" and "Tofu Half 1/N" with
different work granularity. We used the UTS parameter dic-
tating the number of SHA rounds to execute when creating a
node. The figure reports the improvement those two strategies
provide over the "Reference Half (1/N)" one. As we can see, as
granularity increases, the difference in improvement between
the two random strategies diminishes. Indeed, as each steal
provides more work (in compute time) to the thief, the impact
of varying latencies between steal requests on work balance
is lowered.

These last observations confirms that how victims are se-
lected in a work stealing algorithm can be an important opti-
mization point, and that the relation between latency and work
granularity should be studied in more details in the future, in
particular in contexts with large number of compute nodes and
their distance to each other becoming heterogeneous.

VI. RELATED WORKS

Efficient load balancing of parallel applications is a vast
and widely studied topic. In particular, irregular applications
are challenging problems, as their work is distributed unevenly
among processes. Such applications thus require dynamic load
balancing during their execution. Whether these applications
run in shared memory systems and in distributed memory ones,
their load balancing is still nowadays the topic of intensive
research.
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Fig. 16. Comparison between runtime improvements of topology-aware and
random victim selection over "Reference Half", for varying work granularities.
1/N allocation over 8192 nodes.

Work stealing, popularized by Cilk [4] is a scheduling
solution to such issues. In Cilk, an extension of C (and
later C++), work is divided in tasks (continuations), and each
worker manages a stack of local tasks. Workers execute this
stack in FIFO order, and when a worker stack becomes empty,
it steals the bottom task of another worker. The work on
Cilk also introduced the work-first principle: when given a
choice implementing work stealing, always favor executing
work over performing scheduling operations. In particular,
most of the overhead of the steal operation is assumed by
the stealer. Since then, numerous frameworks have used work
stealing to perform load balancing in shared memory. It is
the case for example of some OpenMP [16] implementations,
Intel TBB [6] and XKaapi [5] for example. An extensive
body of work also focus on performance issues for work
stealing implementation, including cache thrashing [17]–[19],
lock contention from multiple steals to the same worker [20]
or the use of GPU architectures [21].

In distributed memory settings, a number of recent parallel
languages for HPC have studied work stealing mechanisms,
UPC [18] and X10 [9] for example. As these languages try
to address both intra-node performance and inter-node perfor-
mance, studies focus on both shared memory issues of work
stealing and distributed ones. Distributed work stealing indeed
suffers from additional performance issues. The unavailability,
until recently, of one-sided communication primitives for
example impeded the application of the work-first principle:
to steal a worker, it was necessary to send him a message
and wait for its response. Distributed termination detection is
another widely studied issue [9], [10].

UTS was designed from the start as a benchmark repre-
senting irregular applications. Several works investigated the
use of work stealing in UTS. Oliver et al. [8], in the paper
formalizing UTS as a benchmark, focus on shared memory
performance, implementing it with both UPC and OpenMP.
The paper also contains an experiment in distributed memory



using UPC, but the number of processes is limited to 24 at
most. One particular work stealing parameter is studied: chunk
size. An MPI implementation of UTS is also studied in [22].
The authors studied both work sharing and work stealing
load balancing, focusing their study on message polling and
distributed termination detection. The study was limited to
small executions, up to 64 processes. More recent papers using
UTS include Dinan et al. [10]. By building a work stealing
framework on top of ARMCI [23], the authors were able to
use one-sided operations to implement efficient task queues,
both inside a compute node and between nodes. They also
implemented an aborting steal mechanism allowing a steal to
fail fast when no work is available. While the authors report
scaling UTS to 8192 processes as well, their experiment are
limited to 2048 compute nodes inside a single cluster. Our
work studies the scalability of UTS at a larger level, and
without using one-sided communications or shared memory
optimizations that can hide heterogeneous latencies between
ranks. Saraswat et al. [9] is another recent performance study
of UTS. The authors, understanding that fast distribution of
work is critical to performance, suggest a distribution scheme
based on lifelines. These lifelines act as work distribution
links that worker favor over random work stealing. After the
number of steal attempts exceeds a threshold, idle worker wait
for their lifelines to provide work, thus limiting the lock and
network contention in the system. This paper also includes
lifestories, a graphic representation of each process activity
during an execution. These lifestories are very similar to the
trace we suggest to compute starting and ending latencies, but
the authors limits their usefulness to activity graphs, whereas
we uses them to measure the speed of work distribution in
the system. Furthermore, this paper limit experimentation to a
thousand of processes. To the best of our knowledge, our work
is the first to consider victim selection as an optimization point
for UTS. Finally, several papers demonstrated the usefulness
of stealing half the work in UTS [10], [24].

Less connected to our work, several papers have discussed
hierarchical work stealing [18], [25]. More precisely, they
suggest building a hierarchical organisation of the processes
depending on the memory hierarchy of a single node or on the
differences between latencies inside a cluster and across two
clusters. These schemes then use fixed policies, one per level
to balance the work and not necessarily based on randomness,
whereas we directly use the distance between nodes as a
weight for random selection. Furthermore, these studies were
very limited, containing two-levels hierarchies at most and a
scaling study for a small number of processes. Our skewed
victim selection is not limited to any hierarchical description
of the system, even if it requires the coordinate of each
process inside the network. It could be applied to other node
organizations than our 6 dimensional network.

VII. CONCLUSION

In this paper, we discussed the impact of victim selection
on the performance of a work stealing application. As a
case study, we chose to analyze the performance of UTS, a

popular benchmark representing irregular applications needing
dynamic load balancing during execution. Scaling this bench-
mark to 8192 compute nodes of a recent supercomputer, we
identify a set of bottlenecks in the public MPI implementation
of the benchmark. In particular we identify that a deterministic
victim selection strategy and single-chunk steals are responsi-
ble for the poor scalability of this implementation. While these
features are of little impact at the small scale UTS was most
commonly studied before, they forbid this implementation to
scale past 2048 nodes.

After these bottlenecks were identified, we modified the
benchmark to use a skewed random distribution for victim
selection. By weighting the probability of a node being stolen
by its distance to the thief in the network, we more than double
the performance of our reference application and allow it to
scale up to 8192 processes, on the same number of nodes.
Moreover, we introduce a metric to provide insight into the
speed at which a load balancer can distribute work among pro-
cesses. Based on an activity trace of all participating processes,
this metric measure the amount of execution time needed for
a minimum amount of processes to become active. Similarly,
we use this information to assess the time separating a given
level of activity from the end of the execution. Using various
work granularities, we also identified that these latencies issues
mostly impact the performance of work stealing when the
amount of compute time stolen at once is small.

From these experiments we argue that, as supercomputers
continue to grow in their number of computing nodes, latencies
and victim selection strategies should be taken into account to
achieve efficient distributed work stealing at large scales.

Studying the scalability of UTS past tens of thousands of
processes is a natural extension of this study. Preliminary
experiments on the K Computer indicate that additional op-
timizations seen in other studies like one-sided communi-
cations might be required to achieve a decent efficiency in
any reference implementation to compare our work with. In
the context of PGAS languages, we are also interested in
implementing work stealing with dependencies. While UTS
provide an excellent benchmark for pure-computation irregular
applications, each work item in this benchmark is independent
from the others, limiting the amount of data that need to be
transfered during a steal. In the case of data dependencies,
stealing a task can trigger massive communications and thus
is more sensible to bandwidth inside a network. Studying the
impact of the network on such problems might require new
benchmarks, possibly using directed acyclic graphs genera-
tion [26] instead of random trees. Studying alternative victim
selection strategies to take into account bandwidth between
nodes is also one of the topics we are interested in.

Finally, a more immediate extension of our work is its
application to existing, more efficient, implementations of
UTS. While porting the necessary underlying communications
library might be an issue, such a study would provide insight
into the capability of a victim selection strategy to impact
already tuned work stealing frameworks.
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