
An Efficient Implementation of Stencil

Communication for the XcalableMP PGAS

Parallel Programming Language

Hitoshi Murai1 and Mitsuhisa Sato2

1 RIKEN AICS, Kobe, Japan
h-murai@riken.jp

2 Center for Computational Science, University of Tsukuba, Tsukuba, Japan
msato@cs.tsukuba.ac.jp

Abstract

Partitioned Global Address Space (PGAS) programming languages have emerged as
a means by which to program parallel computers, which are becoming larger and more
complicated. For such languages, regular stencil codes are still one of the most impor-
tant goals. We implemented three methods of stencil communication in a compiler for a
PGAS language XcalableMP, which are 1) based on derived-datatype messaging; 2) based
on packing/unpacking, which is especially effective in multicore environments; and 3) ex-
perimental and based on one-sided communication on the K computer, where the RDMA
function suitable for one-sided communication is available. We evaluated their perfor-
mances on the K computer. As a result, we found that the first and second methods are
effective under different conditions, and selecting either of these methods at runtime would
be practical. We also found that the third method is promising but that the method of
synchronization is a remaining problem for higher performance.

1 Introduction

As computer systems become larger and more complicated, for example, with respect to memory
hierarchy and interconnect topology, to achieve higher performance, a programming method
that can provide users with high productivity and high performance is strongly demanded.
Partitioned Global Address Space (PGAS) programming languages, such as XcalableMP (XMP)
[22], the coarray feature of Fortran 2008 [18], Unified Parallel C (UPC) [21], Chapel [8], and
X10 [5], are considered to meet this demand and have been investigated extensively.

A number of PGAS languages set the goal of supporting a broader range of applications,
such as irregular applications having task parallelism that High Performance Fortran (HPF)
[14], which is an ancestor of PGAS languages, could never support successfully. However, the
situation whereby regular stencil codes, such as reported in [19, 10, 7], are among the most
significant goals remains unchanged. Therefore such languages should provide a means for
effectively handling stencil communication.

We implemented three types of stencil communication in the Omni XcalableMP compiler
that we are currently developing, and the details of these types of stencil communication are
presented herein. The first type is based on the derived datatype of Message Passing Interface
(MPI) [15]. The second type is based on packing/unpacking buffers, which may be executed in
parallel if possible. Finally, the third type is experimental and is based on the extended RDMA
interface [9] dedicated for the K computer [16]. The goal of the present study is to explore an
optimal method of implementing stencil communications in compilers for PGAS languages.

The contributions of the present paper include:

1



An Efficient Implementation of Stencil Communication for XcalableMP Murai and Sato

• Three implementations of stencil communication, including an RDMA-based implemen-
tation, for PGAS language compilers, are described.

• Their advantages and disadvantages are discussed based on their evaluation on the K
computer.

The remainder of the present paper is organized as follows. Sections 2 and 3 provide a
brief overview of the XMP language specification and the Omni XMP compiler, respectively.
Sections 4 and 5 describe the proposed implementations of stencil communication, which are
evaluated in Section 6. After discussing related research in Section 7, Section 8 presents the
conclusion and areas for the future research.

2 XcalableMP

XcalableMP (XMP) is a directive-based language extension for Fortran and C, proposed by the
XcalableMP Specification Working Group. XMP supports typical parallelization methods based
on the data/task parallel paradigm under the “global-view” model, and enables parallelization of
the original sequential code with minimal modification. XMP also includes the coarray feature
imported from Fortran 2008 for “local-view” programming. In addition, the combination of
OpenMP directives and XMP is to be included in the next update of its specification. In this
section, we present a brief overview of the specification of XMP.

The readers can find an example of an XMP program in Figure 8.

2.1 Execution and Memory Model

Execution Model The execution entities in an XMP program are referred to as XMP nodes
or, more simply, nodes. An XMP node is mapped at runtime to a physical computation node
on which an MPI process can run with multithreading in hybrid parallelization or with multiple
MPI processes in flat parallelization.

The basic execution model of XMP is Single Program Multiple Data (SPMD). Each XMP
node starts execution from the same main routine and continues to execute the same code
independently (i.e., asynchronously) until an XMP directive, which is global and to be executed
collectively by all of the nodes, is encountered.

Memory Model Each node has its own memory and can directly access only data contained
therein. If a node should access data on a remote node, users must explicitly specify an inter-
node communication with an XMP directive, such as reflect described in the following section,
in global-view programming or coarrays in local-view.

2.2 Data and Work Mapping

Data Mapping First, an array is aligned with a template, which is a virtual array, by the
align directive. Next, the template is distributed onto a node set in a certain format, such as
the block format, the cyclic format, or the block-cyclic format, by the distribute directive.
As a result, each element of the array is assigned through the distributed template to one or
more nodes (Figure 1). The set of local elements of an array logically form a rectangle and is
allocated in the local memory.

2



An Efficient Implementation of Stencil Communication for XcalableMP Murai and Sato

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��������� 	�
����
����

���������� �	
����	
���	

Figure 1: Data and Work Mapping in XMP

Work Mapping An iteration space of a loop nest is, in analogy with an array, “aligned” with
a template by the loop directive. An aligned loop nest is executed in parallel by the executing
nodes.

2.3 Directives for Stencil Communication

2.3.1 The shadow Directive

An array distributed in the block or non-uniform block (“gblock”) format may have an addi-
tional area referred to as shadow, which is used as a buffer to communicate with the neighbor
elements of each block of the array.

Figure 2 (a) shows the syntax of the shadow directive of XMP, which is used to specify the
width of the shadow area of each axis of an array1. Users can also specify different widths for
the lower and upper shadows of an axis.

2.3.2 The reflect Directive

Figure 2 (b) shows the syntax of the reflect directive of XMP, which is used to update the
shadow area of an array with the value of its corresponding reflection source.

Specifying the width clause, only a part of the shadow area can be updated. In addition,
when the /periodic/ modifier is specified in the width clause, the update is “periodic” along
the axis, which means that the shadow object at the global lower (upper) bound is updated
with the value of the data object at the global upper (lower) bound.

A communication induced by the reflect directive can be asynchronous when the async

clause is specified with the directive. Such asynchronous communications are issued but not
completed, along with nonblocking communications of the MPI standard, at the point of the
directive to overlap with the following computation.

Figure 3 illustrates how the shadow and reflect directives work for a one-dimensional array.

2.3.3 The wait async Directive

The wait async directive (Figure 2 (c)) blocks and therefore statements following it are not
executed, until all of the asynchronous communications specified by async-ids are complete.

1When shadow-width is of the form “*”, the entire area of the array is allocated on each node, and all of the
area not owned by it is regarded as shadow. This feature is referred to as “full shadow” but is not dealt with in
the present paper.

3



An Efficient Implementation of Stencil Communication for XcalableMP Murai and Sato

[F] !$xmp shadow array-name ( shadow-width [, shadow-width]... )
[C] #pragma xmp shadow array-name [shadow-width][[shadow-width]]...

where shadow-width must be one of:

int-expr
int-expr : int-expr
*

(a) the shadow directive

[F] !$xmp reflect ( array-name [, array-name]... )

[width ( reflect-width [, reflect-width]... )] [async ( async-id )]

[C] #pragma xmp reflect ( array-name [, array-name]... )

[width ( reflect-width [, reflect-width]... )] [async ( async-id )]

where reflect-width must be one of:

[/periodic/] int-expr
[/periodic/] int-expr : int-expr

(b) the reflect directive

[F] !$xmp wait async ( async-id [, async-id ]... ) [on nodes-ref | template-ref]
[C] #pragma xmp wait async ( async-id [, async-id ]... ) [on nodes-ref | template-ref]

(c) the wait async directive

Figure 2: Syntax of the XMP directives for stencil communication ([F] is the line for XMP/-
Fortran, and [C] the line for XMP/C. indicates that the syntax rule continues.)

reflect

p(1) p(2) p(3) p(4)

shadow array

Figure 3: Workings of the shadow and reflect directives

Note that communications other than those induced by reflect can be asynchronous in XMP,
and wait async may have to handle them.

3 Omni XcalableMP

Omni XcalableMP is a reference implementation of an XMP compiler that is being developed as
an open-source project by the HPCS Laboratory of the University of Tsukuba and Programming
Environment Research Team of RIKEN AICS [1].

4



An Efficient Implementation of Stencil Communication for XcalableMP Murai and Sato

����

���

���

���

����	�
������������

����������	�
����
�����
���

������
�����
���

�

�

�




�����

�����

���

���

���

���� ���	
��
���	

���

	���

Figure 4: Descriptors in Omni XMP

Omni XMP consists of two major parts: a translator and a runtime library. The translator
translates an XMP source program into a program that is in the base language and involves
calls to the runtime routines. In particular, each executable directive, such as reflect and
wait async, in the source program is replaced with a sequence of runtime routine calls. The
runtime library is in charge of, for example, parallel execution control, communication and
synchronization, and memory management at runtime.

In the current implementation, the runtime library is based on MPI for portability, although
those based on other communication libraries such as the extended RDMA interface of the K
computer, which is dealt with in Section 5, and GASNet [3] are also being developed or planned.

The current implementation supports platforms of Linux clusters, Cray machines, the K
computer, and any other machines on which MPI works.

4 Implementation

We implemented the reflect communication using two methods for general (MPI-supported)
platforms: One method is based on MPI’s derived datatype, and the other method is based on
packing/unpacking buffers.

The XMP runtime system autonomously determines at runtime which of the two methods
is used for stencil communications. In addition, users can explicitly specify the method with
an environment variable.

4.1 Reflect Schedule Descriptor

The Omni XMP runtime system manages a descriptor of each distributed array to be referenced
as necessary by the runtime library. The lifetime of the descriptor is the same as that of the
corresponding array. In addition to this array descriptor, if a shadow area is declared for a
dimension of an array, the runtime system creates a reflect schedule descriptor (RSD), which
stores information on the schedule of a reflect communication for the dimension, and links the
RSD from the array descriptor (Figure 4). Once created, an RSD is reused repeatedly unless
the schedule is changed by another reflect directive with different clauses specified. Table 1
shows the components of the RSD.

5



An Efficient Implementation of Stencil Communication for XcalableMP Murai and Sato

Table 1: Components of the reflect schedule descriptor

Type Name Description

int
lo width

latest widthshi width

int is periodic latest periodic flag

MPI Datatype
datatype lo

MPI vector datatypedatatype hi

MPI Request req[4]
MPI request handles for
upper/lower send/recv

void*
lo send buf

buffers for lower shadowlo recv buf

void*
hi send buf

buffers for upper shadowhi recv buf

void*
lo send array target positions in array
lo recv array for upper shadow

void*
hi send array target positions in array
hi recv array for upper shadow

int
count components of vector
blocklength (used in pack/unpack)
stride

int
lo rank MPI ranks of neighboring
hi rank nodes

4.2 Method 1: Derived Datatype

Any reflect communication can be performed as a point-to-point nonblocking communication
of a message of type vector and length one, where vector is one of MPI’s built-in derived
datatypes consisting of equally spaced blocks and constructed by the function MPI TYPE VECTOR.

The vector datatype has three components: count for the number of blocks; blocklength for
the number of elements in each block; and stride for the number of elements between start of
each block.

The count, blocklength, and stride of the vector for reflect in the k’th dimension of an
N-dimensional array are calculated as follows2:

count = lsizek+1 × · · · × lsizeN−1

blocklength = lsize0 × · · · × lsizek−1 × shadowk

stride = lsize0 × · · · × lsizek

where lsizei and shadowi represent the local size, which is the size of elements resident on each
node, and the width of the lower or upper shadow area, in the i’th dimension of the array,
respectively. Note that the local size includes the size of the shadow area.

The schedule of the nonblocking communication of the vector is bound to a persistent com-
munication request, which is stored in the RSD and is used to initiate and complete persistent
communication in functions MPI Startall and MPI Waitall, respectively (Figure 5).

Note that a schedule is created for each dimension of the array but, in the current imple-
mentation, persistent communications for all dimensions are issued asynchronously in a batch.
This means that shadow areas at the corner boundaries of an array may not be updated prop-
erly, and, therefore, the nine-point difference cannot be handled. This problem can be resolved

2This applies to the Fortran-style column-major ordering of array elements. These calculations for C can be
obtained easily but are not presented herein

6



An Efficient Implementation of Stencil Communication for XcalableMP Murai and Sato

1 // create datatypes

2 for (i = 0; i < ndims; i++){

3 MPI Type vector(count , blocklength*lwidth , stride , MPI_BYTE , &reflect->dt lo);
4 MPI Type commit(&reflect->dt lo);
5 ...

6 }

7

8 // initiate persistent comms.

9 for (i = 0; i < ndims; i++){

10 MPI Recv init(rbuf_lo , 1, reflect->dt lo, src , tag , comm , &reflect->req[0]);
11 ...

12 MPI Send init(sbuf_hi , 1, reflect->dt hi, dst , tag , comm , &reflect->req[3]);
13 }

14

15 // do persistent comms.

16 MPI Startall(4*ndims , reflect->req);
17 MPI Waitall(4*ndims , reflect->req, status );

Figure 5: Overview of derived-datatype method

easily by issuing persistent communications for each dimension synchronously and in sequence.
However, for asynchronous reflect (described in Section 4.4), communications between ordi-
nal neighbor nodes should be implemented in order to properly update the shadow area. The
pack/unpack and the RDMA methods described in the following sections also have the same
problem.

4.3 Method 2: Pack/Unpack

The method of communication of a message of type vector performed by the MPI library is
implementation-dependent. One implementation can pack a vector into a contiguous buffer
before sending data, whereas another implementation might send blocks of a vector one by one
without packing. In general, internal packing/unpacking in sending/receiving a vector should
be considered to be neither fully optimized nor multithreaded even in a multicore environment.
Note that it is theoretically possible to parallelize packing/unpacking vectors, whereas this is
not possible for a general datatype.

In order to achieve higher performance primarily in multicore environments, routines for
packing/unpacking vectors are multithreaded using an OpenMP directive. Note that the spec-
ification states that an XMP directive is single-threaded and therefore an implementation can
use multithreading to parallelize the corresponding runtime library routines.

However, such parallelization is effective only when more than one processor core is available
in an XMP node (i.e., when using hybrid parallelization). Therefore the Omni XMP runtime
system determines whether the packing/unpacking operation is to be executed in parallel, using
an OpenMP API runtime library routine omp get num procs, which returns the number of
processors (cores) available to the program.

Figure 7 shows the internal packing routine XMPF pack vector in Omni XMP, where vari-
ables count, blocklength, and stride are the same as those of the derived-datatype method.
The loop is executed in parallel only if the number of available processor cores is greater than
one and the amount of packing/unpacking operation is large enough for parallelization. The
THRESHOLD variable indicates the threshold of the amount for parallelization, and the appropri-
ate value of THRESHOLD depends on the environment.

7



An Efficient Implementation of Stencil Communication for XcalableMP Murai and Sato

�����

�����

�����������

����	
�������

�����	
��


����

��
� 	
��

������

��	
�

�
�
�
�
�
�
�
�
�
	



Figure 6: Packing/Unpacking a vector in reflect

1 void _XMPF_pack_vector(char * restrict dst , char * restrict src ,

2 int count , int blocklength , int stride ){

3

4 if (_xmp_omp_num_procs > 1 && count * blocklength > THRESHOLD ){

5 #pragma omp parallel for

6 for (int i = 0; i < count; i++){

7 memcpy(dst + i * blocklength , src + i * stride , blocklength );

8 }

9 }

10 else {

11 for (int i = 0; i < count; i++){

12 memcpy(dst + i * blocklength , src + i * stride , blocklength );

13 }

14 }

15

16 }

Figure 7: Packing routine

The communication buffer used for packing/unpacking in this method is managed by the
runtime system. In the current implementation, once allocated for the dimension of an array,
the communication buffer persists and is reused repeatedly for the lifetime of the array.

4.4 Asynchronous Communication

As shown in Section 2.3.2, a reflect communication can be asynchronous when the async

clause specified in a reflect directive.
Such an “asynchronous reflect” is handled by the Omni XMP runtime system through

MPI request handles associated with the nonblocking communications issued for it. The asyn-
chronous reflect proceeds at runtime as follows:

1. At a reflect directive, a set of nonblocking communications is issued, and their request
handles are stored in the asynchronous communication table (ACT), which is a hash table

8



An Efficient Implementation of Stencil Communication for XcalableMP Murai and Sato

with async-ids as the hash keys.
2. The communications proceed while possibly overlapping some computations.
3. At an wait async directive, the ACT is retrieved with the specified async-id to obtain

the corresponding request handle, and issues MPI Waitall to complete the nonblocking
communications associated with the request.

Note that the wait async directive is used to complete asynchronous communications other
than reflect, and, therefore, the above mechanism is designed to be applicable to any asyn-
chronous communications in XMP.

In the current implementation, asynchronous reflect is performed in the derived-datatype
method described in Section 4.2, because issuing a nonblocking communication as early as
possible without packing/unpacking in order to facilitate overlapping the following computation
is advantageous for achieving high performance.

5 RDMA-based Experimental Implementation

In this section, we present an experimental implementation of the reflect directive based on
the extend RDMA interface of the K computer3.

5.1 The Extended RDMA Interface

The MPI library of the K computer and FUJITSU’s PRIMEHPC FX10 supercomputer provides
users with the extended RDMA interface. The interface consists of a number of functions4 that
enable inter-node communication that makes the most of the underlying interconnect hardware,
such as Network Interface Controllers (NICs).

When implementing reflect communications using RDMA writes of this interface, the
following items must be considered.

• An array must be registered to the system and associated with a memory ID using the
FJMPI_Rdma_reg_mem function, in advance of being accessed through this interface. In
the current implementation, all of the distributed arrays with shadow are registered to be
(possibly) accessed through the interface.

• The array must be distributed onto the entire node set that corresponds to
MPI COMM WORLD, because the target process of RDMA is identified with the rank
in MPI COMM WORLD.

• The availability for the RDMA writes, i.e., whether the shadow areas on the neighboring
nodes are ready to be updated, must be explicitly confirmed by each node before issuing
the RDMA writes, which means that synchronizations are needed before reflect.

• Completion of the RDMA writes, i.e., whether the shadow areas on the neighbor-
ing nodes have been updated, must be explicitly confirmed by each node using the
FJMPI_Rdma_poll_cq function, which means that synchronizations are needed after
reflect.

• A tag that is an integer from 0 to 14 can be assigned to an RDMA in order to identify
the RDMA. Since an async-id is used as the tag in the asynchronous mode, the value of
the async-id is restricted to the 0 to 14 range.

The third and fourth items are due to the collectiveness of the reflect communication.
3The implementation is experimental because this implementation has some limitations (e.g., the number of

arrays having shadow areas) that are derived from those of the extend RDMA interface and has not yet been
released.

4These functions are based on a low-level communication library dedicated to the K computer and FX10.

9



An Efficient Implementation of Stencil Communication for XcalableMP Murai and Sato

5.2 Method 3: RDMA

Normal Mode A normal reflect communication based on the extended RDMA interface
is performed in the following steps.

1. Each node waits until all of the nodes reach this point (barrier synchronization);
2. issues an RDMA write for each block of the vector;
3. polls its NICs until all of the RDMA writes issued by the node are completed; and
4. waits until all of the nodes reach this point (barrier synchronization).

The first barrier synchronization guarantees that the neighboring nodes are available, and
the second barrier synchronization guarantees that all of the actions involving the communica-
tion on both the local and remote nodes are completed.

The reason for the lack of packing/unpacking is that the latency of RDMA writes is suf-
ficiently low and the overhead of issuing multiple RDMA writes is smaller than that of pack-
ing/unpacking buffers.

Asynchronous Mode Steps 1 and 2 above are performed by reflect, and steps 3 and 4
above by wait async, with the following differences. At reflect, RDMA writes are issued
while setting the async-id as a tag, and the number of RDMAs issued for the async-id is stored
in ACT. At wait async, the NIC is polled until as many RDMAs as extracted from ACT are
completed.

6 Evaluation

Using XMP, we parallelized a prototype of the dynamical core of a climate model for large
eddy simulation, SCALE-LES [19], which is a typical five-point stencil code in Fortran (Figure
8), and ran the prototype on the K computer [16] in order to evaluate the performance of each
implementation of reflect. The performance of an MPI-based implementation was also evalu-
ated for comparison. The language environment used was K-1.2.0-13. The problem dimensions
were 512 × 512 horizontally and 128 vertically, and the execution time was measured for 500
time steps.

In this evaluation, we assigned one XMP node to one compute node of the K computer,
where intra-node thread-level parallelism can be automatically extracted from node programs
by the compiler. The condition for parallelizing packing/unpacking buffers in the pack/unpack
method was that the count of a vector (count in Figure 7) was more than eight times greater
than the number of available cores (_xmp_omp_num_procs in Figure 7), i.e., more than eight
blocks per thread. Therefore, the length of each block (blocklength in Figure 7) was not
considered in this evaluation.

For clarify, the evaluation results are presented in three graphs in Figure 9. For the purpose
of comparison, some results are presented in more than one graph. The vertical axes in these
graphs indicate the speedup of the execution time, relative to that on a single node, and the
horizontal axes in these graphs indicate the number of nodes. The computation times of these
implementations are approximately equal because their computation codes generated by Omni
XMP are identical and are nearly equivalent to that of MPI . Therefore, the difference in the
execution time comes from the difference in the communication time (Table 2).

Figure 9 (a) shows the performance of normal-mode reflect communications, where MPI
indicates the results obtained for the hand-coded MPI version, XMP-dt indicates the results
obtained for the derived-datatype method, and XMP-pack indicates the results obtained for

10



An Efficient Implementation of Stencil Communication for XcalableMP Murai and Sato

1 !$xmp nodes p(N1,N2)

2 !$xmp template t(IA ,JA)

3 !$xmp distribute t(block ,block) onto p

4 ...

5 real (8) :: dens (0:KA ,IA ,JA)

6 ...

7 !$xmp align (*,i,j) &

8 !$xmp& with t(i,j) :: dens , ...

9 !$xmp shadow (0,2,2) :: dens , ...

10 ...

11 !$xmp reflect (dens , ...) width &

12 !$xmp& (0,/ periodic /2,/ periodic /2)

13 ...

14 !$xmp loop (ix ,jy) on t(ix,jy)

15 do jy = JS, JE

16 do ix = IS, IE

17 ...

18 do kz = KS+2, KE -2

19 ... dens(kz,ix+1,jy) + ...

20 ...

21 end do

22 ...

23 end do

24 end do

Figure 8: Code snippet of the target climate model

Table 2: Breakdown of the execution time (in seconds)

#nodes 4 16 64 256 1024
comm. comp. comm. comp. comm. comp. comm. comp. comm. comp.

XMP-pack 8.98 413.1 7.09 102.3 4.95 23.3 4.28 5.35 2.46 1.17
XMP-dt 16.77 413.7 15.79 102.5 8.94 23.3 5.99 5.22 3.30 1.21
XMP-RDMA 7.19 415.4 7.04 101.0 4.80 23.4 4.06 5.22 2.79 1.12
XMP-async 29.50 416.9 15.47 103.3 8.35 23.2 5.48 5.29 3.05 1.26
MPI 15.39 423.6 8.82 100.0 5.47 23.0 3.61 4.98 4.16 N/A
MPI-RDMA 8.39 421.3 2.58 100.1 1.09 23.0 0.64 5.00 1.99 1.21

the pack/unpack method. The pack/unpack method is comparable in performance to the MPI
version oand is faster than the MPI version for the 1,024-node execution. However, the results
might depend on the fast inter-core hardware barrier of SPARC64 VIIIfx [24]. In fact, we
observed that the pack/unpack method is not as effective for an average Linux cluster, as
campared to the K computer. On the other hand, the derived-datatype method is slower than
MPI. We verified that the derived-datatype method is faster than both the pack/unpack method
and MPI in the flat-parallel environment. The results are not presented herein because of space
limitations.

Figure 9 (b) shows the performance of asynchronous-mode reflect communications, where
XMP-dt indicates the results obtained for the synchronous-mode derived-datatype method (for
comparison), XMP-async indicates the results obtained for the asynchronous-mode reflect

that do not overlap with the computations, and XMP-async-olap indicates the results obtained
for as much part of the asynchronous-mode reflect as possible overlapped with the compu-
tations. The overhead introduced for asynchronous communication, such as management and

11



An Efficient Implementation of Stencil Communication for XcalableMP Murai and Sato

�

���

���

���

���

���

���

� ��� ��� ��� ��� ���� ����

�
�
�
�
�
�
�
��
�	


�
��


�
�

��������	�
���������
��

��������

����	


���

(a) normal reflect

�

���

���

���

���

���

���

� ��� ��� ��� ��� ���� ����

�
�
�
�
�
�
�
��
�	


�
��


�
�

��������	�
���������
��

��������	�
���

��������	

����
�

(b) asynchronous reflect

�

���

���

���

���

���

���

� ��� ��� ��� ��� ���� ����

�
�
�
�
�
�
�
��
�	


�
��


�
�

��������	�
���������
��

��������

��������

����	
��

(c) RDMA-based reflect

Figure 9: Evaluation results on the K computer

retrival of ACT, is not so large and the performance is improved significantly by overlapping
communication with computation in the 1,024-node execution.

Figure 9 (c) shows the performance of RDMA-based reflect communications, where MPI-
RDMA indicates the results obtained for the hand-coded RDMA-based version, XMP-pack
indicates the results obtained for the pack/unpack method (not based on RDMA, for com-
parison), and XMP-RDMA indicates the results obtained for the RDMA-based method. The
experimental implementation is slower than both the hand-coded RDMA-based implementa-
tion and the pack/unpack implementation because the barrier synchronizations before issuing
RDMA writes and after completing RDMA writes are too strong to perform stencil communi-
cation efficiently. Actually, in the hand-coded implementation, point-to-point synchronizations
between neighboring nodes are used instead of barrier synchronizations. In the future, synchro-
nizations performed in RDMA-based reflect should be weakened in order to achieve higher
performance.

12



An Efficient Implementation of Stencil Communication for XcalableMP Murai and Sato

7 Related Research

The reflect directive and its asynchronous mode of XMP originates from HPF/JA, which is
an extension of High Performance Fortran for accelerating real-world applications [12, 20]. The
function of partial reflection was first supported by HPF/SX V2 [17] and HPF/ES [23], the
HPF compiler for NEC’s SX-series supercomputers and the Earth Simulator, respectively, and
later by the dHPF compiler developed by Rice University [6]. Since there is no specification
for periodic stencil communication in either the HPF standard or the HPF/JA specification,
to our knowledge, no compilers for HPF or HPF-like languages have supported periodic stencil
communication yet. On the other hand, a region-based parallel language ZPL that supports
periodic stencil communication has been reported [4].

The optimization of stencil communication in HPF is described in a previous study [13], in
which a method of generating communications based on realignment was proposed and compile-
time optimizations for multidimensional stencil communications were presented.

In [2, 11], implementations of mesh-based regular applications with coarrays, which is a
one-sided communication feature from Co-Array Fortran or Fortran 2008, are compared with
implementations of mesh-based regular applications with MPI, from the viewpoints of, for
example, memory layout and the usage of communication buffers. Stencil communications
based on coarrays were demonstrated to be effective in mesh-based regular applications and
could, in some cases, outperform stencil communications based on MPI.

8 Conclusions and Future Research

We implemented three methods for stencil communication in the Omni XMP compiler. The
first method based on derived-datatype messaging is simple and general, and could be efficient
depending on the implementation of the underlying MPI library. The second method is based
on packing/unpacking and has the advantage of being multithreaded in multicore environments.
The third method, which is experimental and is based on the extended RDMA interface of the
K computer, may be able to achieve higher performance, but at present has approximately the
same performance as the second method because of exceedingly strong synchronizations.

Areas for future research include:

• managing reflect communications from/to ordinal neighbor nodes properly in nine-point
difference stencil codes;

• setting an appropriate threshold for parallelizing packing/unpacking buffers in the pack-
/unpack method;

• improving the performance of the RDMA-based method by reducing the strength of syn-
chronizations; and

• providing a more portable and efficient implementation based on the one-sided commu-
nication of MPI-3.

Acknowledgements

The results were obtained in part using the K computer at the RIKEN Advanced Institute for
Computational Science. The original code of the climate model used in the evaluation and its
RDMA-based implementation were provided by Team SCALE of RIKEN AICS.

13



An Efficient Implementation of Stencil Communication for XcalableMP Murai and Sato

References

[1] Omni XcalableMP Compiler. http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/

xcalablemp/.

[2] Richard Barrett. Co-array Fortran Experiences with Finite Differencing Methods. In The 48th
Cray User Group meeting, Lugano, Italy, 2006.

[3] D. Bonachea. GASNet specification. Technical report, University of California, Berkeley (CSD-
02-1207), October 2002.

[4] Bradford L. Chamberlain. The Design and Implementation of a Region-Based Parallel Language.
PhD thesis, University of Washington, November 2001.

[5] Philippe Charles, Christopher Donawa, Kemal Ebcioglu, Christian Grothoff, Allan Kielstra,
Christoph von Praun, Vijay Saraswat, and Vivek Sarkar. X10: An Object–oriented Approach
to Non–Uniform Cluster Computing. In Proc. OOPSLA 05, 2005.

[6] D. Chavarria-Miranda and J. Mellor-Crummey. An Evaluation of Data-Parallel Compiler Support
for Line-Sweep Applications. J. Instruction Level Parallelism, 5, 2003.

[7] Collins, William D and Bitz, Cecilia M and Blackmon, Maurice L and Bonan, Gordon B and
Bretherton, Christopher S and Carton, James A and Chang, Ping and Doney, Scott C and Hack,
James J and Henderson, Thomas B and others. The Community Climate System Model Version
3 (CCSM3). J. Climate, 19(11):2122–2143, 2006.

[8] Cray Inc. Chapel Language Specification 0.93. http://chapel.cray.com/spec/spec-0.93.pdf,
2013.

[9] FUJITSU LIMITED. Parallelnavi Technical Computing Language MPI User’s Guide, 2013.

[10] Furumura, Takashi and Chen, Li. Parallel simulation of strong ground motions during recent and
historical damaging earthquakes in Tokyo, Japan. Parallel Computing, 31(2):149–165, 2005.

[11] Manuel Hasert, Harald Klimach, and Sabine Roller. CAF versus MPI - Applicability of Coarray
Fortran to a Flow Solver. In Proceedings of the 18th European MPI Users’ Group conference on
Recent advances in the message passing interface, EuroMPI’11, pages 228–236, Berlin, Heidelberg,
2011. Springer-Verlag.

[12] Japan Association of High Performance Fortran. HPF/JA Language Specification. http://www.

hpfpc.org/jahpf/spec/hpfja-v10-eng.pdf, 1999.

[13] Tsunehiko Kamachi, Kazuhiro Kusano, Kenji Suehiro, and Yoshiki Seo. Generating Realignment-
Based Communication for HPF Programs. In Proc. IPPS, pages 364–371, 1996.

[14] Ken Kennedy, Charles Koelbel, and Hans Zima. The Rise and Fall of High Performance Fortran:
An Historical Object Lesson. In Proc. 3rd ACM SIGPLAN History of Programming Languages
Conf. (HOPL-III), pages 7–1–7–22, San Diego, California, June 2007.

[15] Message Passing Interface Forum. MPI: A Message Passing Interface Standard Version 3.0. http:
//www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf, 2012.

[16] Hiroyuki Miyazaki, Yoshihiro Kusano, Naoki Shinjou, Fumiyoshi Shoji, Mitsuo Yokokawa, and
Tadashi Watanabe. Overview of the K computer. FUJITSU Sci. Tech. J., 48(3):255–265, 2012.

[17] Hitoshi Murai, Takuya Araki, Yasuharu Hayashi, Kenji Suehiro, and Yoshiki Seo. Implementation
and Evaluation of HPF/SX V2. Concurrency and Computation — Practice & Experience, 14(8–
9):603–629, 2002.

[18] Robert W. Numrich and John Reid. Co-arrays in the next Fortran Standard. ACM Fortran Forum,
24(2):4–17, 2005.

[19] Team SCALE. SCALE-LES. http://scale.aics.riken.jp/scale-les/.

[20] Yoshiki Seo, Hidetoshi Iwashita, Hiroshi Ohta, and Hitoshi Sakagami. HPF/JA: extensions of
High Performance Fortran for accelerating real-world applications. Concurrency and Computation
— Practice & Experience, 14(8–9):555–573, 2002.

[21] UPC Consortium. UPC Specifications, v1.2. Technical report, Lawrence Berkeley National Lab

14

http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/xcalablemp/
http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/xcalablemp/
http://chapel.cray.com/spec/spec-0.93.pdf
http://www.hpfpc.org/jahpf/spec/hpfja-v10-eng.pdf
http://www.hpfpc.org/jahpf/spec/hpfja-v10-eng.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://scale.aics.riken.jp/scale-les/


An Efficient Implementation of Stencil Communication for XcalableMP Murai and Sato

(LBNL-59208), 2005.

[22] XcalableMP Specification Working Group. XcalableMP Specification Version 1.1. http://www.

xcalablemp.org/xmp-spec-1.1.pdf, 2012.

[23] Takashi Yanagawa and Kenji Suehiro. Software System of the Earth Simulator. Parallel Comput-
ing, 30(12):1315–1327, 2004.

[24] Toshio Yoshida, Mikio Hondo, and Ryuji Kan Go Sugizaki. SPARC64 VIIIfx: CPU for the K
computer. FUJITSU Sci. Tech. J., 48(3):274–279, 2012.

15

http://www.xcalablemp.org/xmp-spec-1.1.pdf
http://www.xcalablemp.org/xmp-spec-1.1.pdf

	Introduction
	XcalableMP
	Execution and Memory Model
	Data and Work Mapping
	Directives for Stencil Communication
	The shadow Directive
	The reflect Directive
	The wait_async Directive


	Omni XcalableMP
	Implementation
	Reflect Schedule Descriptor
	Method 1: Derived Datatype
	Method 2: Pack/Unpack
	Asynchronous Communication

	RDMA-based Experimental Implementation
	The Extended RDMA Interface
	Method 3: RDMA

	Evaluation
	Related Research
	Conclusions and Future Research

