
Discovering Cache Partitioning
Optimizations for the K Computer

Swann Perarnau
RIKEN AICS

perarnau@riken.jp

Mitsuhisa Sato
University of Tsukuba/RIKEN AICS

msato@cs.tsukuba.ac.jp

Abstract
The processor architecture available on the K computer
(SPARC64 VIIIfx) features an hardware cache partitioning
mechanism called sector cache. This facility enables soft-
ware to split the memory cache in two independent sectors:
data loads in one sector cannot trigger the eviction of data in
the second one. Moreover, software is responsible for data
placement in each sector by issuing special instructions tag-
ging the various memory loads performed during execution.
The implementation details of this cache partitioning mech-
anism also enable fast redistribution of the cache during an
application’s runtime, without any cost, allowing any opti-
mization using the sector cache to be applied multiple times,
with different setups, in the event of phase changes.

Unfortunately, in its current state, the compilers provided
on the K Computer do not implement any automatic opti-
mization using this cache facility. In the contrary, the only
high-level interface to this mechanism is a set of directive to
instruct the compiler to generate tagging instructions over a
code region. Thus, only application programmers with intri-
cate knowledge of both the memory access patterns of their
code and the K Computer architecture can take advantage of
this facility.

To address this issue and to study new optimization
schemes using cache partitioning, we present in this paper a
framework using binary instrumentation and reuse distance
analysis to discover the locality of important data structures
in an application and to suggest appropriate data distribution
schemes for the sector cache. These optimizations are then
translated into calls to the source-level API provided by the
K Computer compilers. We applied our framework to ana-
lyze and optimize a set of HPC benchmarking applications
and demonstrate significant performance improvements.

Categories and Subject Descriptors C.4 [Performance of
Systems]: Measurement Techniques

Keywords Reuse distance, Binary instrumentation, Cache
partitioning

1. Introduction
As the difference between memory and processor speeds
continues to increase, optimizing a program locality be-
comes one of the most important issue in many research
fields, including high performance computing. Over the
years, many approaches to this problem have been evalu-
ated, ranging from new hardware designs for the memory
hierarchy to software solutions modifying either the pro-
gram instruction or the data organisation to improve locality.

The improvement of the hardware cache has specifically
been the focus of numerous studies. Indeed, any method
reducing the average cost of a memory access will have
tremendous impact on the performance of memory bound
applications. Among those studies, we can cite work on
scratchpad memories [1, 24] in embedded systems that al-
lows a program to lock small data regions very close to the
CPU or special instructions for non-cacheable memory ac-
cesses [11] to reduce cache thrashing.

In this paper we will focus on cache partitioning: a mech-
anism to split a cache in several sectors, each of them han-
dling their data independently. In most cases, this indepen-
dence guaranties that a memory load to a specific sector will
not trigger the eviction of a cache line in another sector.
While most research in this subject focuses on operating sys-
tem schemes to forbid one process from thrashing the cache
of another one, this paper discusses on the contrary the use of
cache partitioning as an optimization tool for a single HPC
application. Indeed, isolating a data structure in cache to pro-
tect it from streaming accesses should improve significantly
the performance of a program.

Our target platform, the K computer [17] and its pro-
cessor the SPARC64VIIIfx [6], features such a cache par-
titioning facility called the sector cache. Although multiple
works [3, 5, 14, 20, 22] already studied cache behavior anal-
ysis and optimization using such a mechanism, specific ar-
chitectural details of the implementation and API of the sec-
tor cache render them inefficient or impractical. Moreover,
we argue that these particular traits also enables new opti-
mization opportunities. Therefore, we discuss in the follow-
ing our design for a new analysis and optimization frame-

work for this architecture, with HPC applications as the spe-
cific target.

Our framework leverages and extends several existing
methodologies. First, we use binary instrumentation of the
target application along with debug information parsing
to trace the various memory accesses to major data struc-
tures of a code region. This trace is then analyzed using a
derivative of reuse distance to assess the locality of theses
structures. Third, by modeling the impact of these localities
on the performance of the application, we identify whether
cache thrashing could be reduced by isolating some of these
data structures to a specific sector. We envision these com-
ponents as steps in an optimization loop: after identifying
cache performance hotspots, a developer can analyze them,
use the sector cache API to optimize them and repeat the
process as much as required.

The remainder of this paper is organized as follows. Next
section describes the K computer processor and in particular
its sector cache. Section 3 presents existing works related to
this study and discusses their applicability to our issues. Sec-
tion 4 gives an overview of our memory tracing and locality
analysis framework. Section 5 explains our metrics based on
reuse distance and their uses to predict the impact of a sec-
tor cache configuration on the application’s performance. We
validate this framework in Section 6, demonstrating its po-
tential on a custom built application and applying it on HPC
benchmarks. We conclude and discuss future work in Sec-
tion 7.

2. Cache Partitioning on the K Computer
The K Computer — ranked second on the Top500 issue of
June 2012 — contains over 80 000 compute nodes, each
composed of a single SPARC processor chip and 16 GiB of
memory. The processor, a SPARC64 VIIIfx, was specifically
designed for this system. This chip is produced by Fujitsu us-
ing a 45-nm process and is composed of 8 cores operating at
2 GHz for a peak performance of 128 GFLOPS [6]. It is an
extended version of the SPARC-V9 architecture targeted at
high performance computing, in particular it includes eight
times more floating point registers (256) and SIMD instruc-
tions for improved parallelism on HPC applications.

2.1 Memory Hierarchy and Sector Cache
This processor’s memory hierarchy is composed of two
cache levels. Each core has two private L1 2-way associa-
tive caches of 32 KiB, for instruction and data. These caches
are virtually indexed. An unified L2 cache is shared among
all cores. This cache is 6 MiB wide, 12-way associative and
physically indexed. All caches have a cache line size of 128
bytes and are inclusive: any data in the L1 cache is also in
the L2.

Our focus in this paper is on a special feature of the data
caches: software-controlled cache partitioning. Called sector
cache, it allows software to split the cache into two indepen-

dent partitions or sectors. Once activated, this partitioning
ensures that a cache line retrieved for one sector cannot evict
a cache line belonging to the other. In other words, instead
of a single LRU eviction policy in the cache, the two sectors
implement their own LRU. While both cache levels possess
a sector cache, for the sake of simplicity, we will only dis-
cuss this feature over the L2.

The technical name for the hardware implementation of
the sector cache is instruction-based way partitioning. To ac-
tivate this partitioning, an unprivileged instruction specifies
a splitting rule for the cache’s associative sets: how many
ways should be used by sector 0 and how many for sector 1.
If the rule is valid (i.e. the two sectors contain at least one
way), the information is stored in hardware and partitioning
is activated. At this point, every memory load is considered
to be of a specific sector (by default sector 0). Assigning a
memory load to a sector uses another set of instructions: the
unprivileged sxar1 and sxar2 instructions can specify for
respectively the next and the two following memory access-
ing instructions the sector of each operand.

Isolation between the two sectors is ensured by the hard-
ware. Two counters keep track inside each associative set of
the number of lines belonging to each sector. When a cache
line is retrieved from memory, the sector checks if it is full,
in which case a line of the same sector is evicted according
to a pseudo-LRU policy. When the sector is not full, due to
a cache line previously invalidated for example, the size of
the sector is increased and data placed in an available line.
As a matter of fact, nothing in this hardware implementation
restricts the two sector’s sizes to sum up to 12 (the num-
ber of ways in an associative set). The behavior of the evic-
tion/sector management mechanism becomes however much
more complicated (isolation in not guarantied anymore) and
we chose not discuss such setups in this paper. Another detail
that will matter in the next section however is the behavior of
this partitioning when ways are left unoccupied. If the sum
of both sectors sizes is less than 12, any sector is allowed to
use the remaining ways. Consequently, the cache is always
used in full, with the sectors competing for unassigned ways
in some configurations. This behavior makes it impossible
for example to limit the cache of the application by restrict-
ing it to a small sector, as the latter will grow above its size
limit if no memory is loaded in the other sector.

For simplicity, we will consider in the remainder of this
paper that only 11 configurations are valid for the sector
cache: if we note a configuration (s, t) with s the size of
sector 0 and t = 12−s the size of sector 1, then we will only
discuss the set of configurations (1, 11), (2, 10), . . . , (11, 1).

2.2 Sector Cache Programming Interface
If one is willing to program an HPC application in SPARC
assembly, the special instructions activating the sector cache
and assigning to sectors some of the memory accesses are
all that is required. Nevertheless, the C and Fortran com-
pilers provided on the system also give access to an higher

sxar2
sllx %xg29, 3, %xg29
fmuld %f56, %f88, %f56
sxar2
ldd,1 [%xg24 + %i4], %f324
ldd [%xg29 + %i5], %f322
sxar1
sllx %xg27, 2, %g4

Figure 1. Sector cache example: the first ldd instruction
is tagged for sector 1 by the previous sxar2. Disassembly
indicates use of the sector 1 by the mnemonic ‘,1’ as the
sxar instructions can serve other purposes.

level interface. Such API should be easy to use to anybody
familiar for the OpenMP or OpenAcc language extensions.
Indeed, it is directive-based: the programmer marks by spe-
cial comments (pragmaS in C) the code regions that should
use the sector cache and the compiler generates the required
instructions. Two directives are provided: one setting the size
of each sector and one specifying the instructions to tag into
the sector 1, by taking data structures (arrays) names as a pa-
rameter. These directives can either be applied to a procedure
as a whole or to a smaller code regions by using begin/end
delimiters.

double a[N],b[N][N],C[N];
void mvp(void)
{
#pragma procedure cache_subsector_size 10 2
#pragma procedure cache_subsector_assign c

int i,j;
for(i = 0; i < N; i++)

for(j = 0; j < N; j++)
a[i] += b[i][j]*c[j];

}

Figure 2. C matrix-vector product with a (10, 2) sector
cache configuration and the c array tagged into sector 1.

During assembly generation, the compiler will consider
that any instruction touching a data structure assigned to
sector 1 must be preceded by the special sxar instructions,
tagging the memory access as belonging to the right sector.
Since the sector 0 is the default sector, the user only need to
specify the structures going to sector 1. Unfortunately, this
interface has an obvious issue: if the compiler cannot deter-
mine that an instruction accesses a data structure, it cannot
generate the right tagging instruction before it. For example,
the use of pointer aliasing, accessing a structure by another
variable pointing to the same memory, will not trigger the
tagging instruction generation. Moreover, the compiler does
not provide any means to automatically use the sector cache.
It is up to the application programmer to know where and
how this feature could improve the performance of its code.

Finally, environment variables on the computing node
can exert some control on the sector cache. The runtime
environment provides two of them, one to activate/deactivate
the sector cache completely and one to configure an initial
size for the sectors. Of course, using the latter instead of
the directive inside the source code makes it impossible to
dynamically change the sector sizes during runtime, to adapt
to phase changes for example.

3. Related Work
This sector cache facility is closely related to two kind of
works: scratchpad memories in embedded systems and re-
cent software-controlled cache partitioning methods.

3.1 Scratchpad Memories
In embedded systems, real-time constraints often require
programmers to know precisely how much processing time
a given code will take. In such contexts cache memories,
unpredictable as their behavior depend on the data pro-
cessed, might be forbidden. Instead, scratchpad memories
are used. Originally, a scratchpad memory was a mem-
ory module close to the processor where program code or
data was placed statically into [1]. To use such memories
efficiently, compilers analyze the locality of the program
and choose statically which code or data to move to this
scratchpad [24]. Recent architectures also include software-
controlled scratchpad, with DMA-like special instructions
used to explicitly move data in and out of this memory [12].
As a result, most works on scratchpad memories focus on
static analysis to identify data with good locality across the
whole program execution or on optimizing the scheduling of
explicit data movement instructions.

While our sector cache facility might share similarities
with such memories, the programmer has little control in our
context over the order in which data is fetched from memory
into the cache, nor over the eviction of this same data: a LRU
policy is still active inside the sector cache. Moreover, we
argue that different code sections of a program might exhibit
different localities. In other words, the sector cache might
need to be reconfigured several times over the course of a
program execution.

3.2 Software-Controlled Cache Partitioning
In a different context, recent works studied the implementa-
tion and use of a software-controlled cache partitioning facil-
ity on commodity systems, mostly using page coloring [13].

Cache partitioning works use page coloring in a unin-
tended way: two virtual memory regions not using the same
colors cannot conflict each other in cache. Thus, partition-
ing the cache is simply the process of assigning colors to the
virtual address space of a process in a specific way, so that
structures are isolated from each other.

Several drawbacks to this method can be immediately
identified. First, it requires changing the virtual memory

manager of the underlying operating system or, at least, to
extend and bypass it in significant ways. Second, it is limited
by the amount of physical memory available on the system.
While a complete and integrated solution to this particular
issue could be implemented by rewriting the swapping sys-
tem, to the best of our knowledge no existing work did it. Fi-
nally, changing a partitioning during an application runtime
is very expensive in this setup. Indeed, it requires stopping
the program and moving data from every discarded physi-
cal page to a new one. Among works that use page coloring
and thus suffer from these issues we can cite Soft-OLP [14],
ULCC [5] and CControl [20].

The Soft-OLP paper represents the closest work to our
goals. It describes a binary instrumentation framework to
analyze the locality of objects (data structures) inside a pro-
gram to better distribute the cache among them using cache
partitioning. The cache partitioning environment the author
use allows for more than two partitions and the authors use
this feature to create multiple groups of objects depending
on their locality and relative influence. To analyze the latter,
the authors define an inter-object interference metric. This
metric tries to assess how the reuse distance of a data struc-
ture will evolve if another structure is inserted in the same
partition. The authors chose to sample the number of refer-
ences made to the new structure between accesses to the first
one. To be meaningful, this measurement is made for ev-
ery pair of data structure. Unfortunately, Soft-OLP doesn’t
match our goals on several issues. First, it uses page color-
ing for the partitioning, limiting the tool to whole program
analysis since dynamic repartitioning is too costly. Second,
the tool only detects global objects reading at a very simple
level the program symbol table and structures created by a
single call to standard allocation functions (the C malloc
family). The authors acknowledge that this issue triggered
them to modify the source code of several of the benchmarks
used in SPEC CPU2000 for example. We consider that the
application’s code should not be modified, specially in pro-
grams where a significant effort has already been made to
optimize them. Moreover, we should be able to measure the
locality of parameters to a function, including subranges of
an array. Thus, at this stage of our study, we do not consider
intra-object interference to be required, which simplifies the
locality analysis.

On the same topic, ULCC [5] and CControl [20] are two
software environments allowing a user to partition the cache
for its application. While ULCC relies on user knowledge of
each application locality for their optimization — something
we want to eliminate — CControl discusses the use of mod-
ified runs of the application to discover automatically the
locality of its data structures. Unfortunately, while likely to
be faster than binary instrumentation to analyze the locality
of an application, this experimental scheme is not possible
on the K Computer.

4. A Framework for Analysis and
Optimization of Partitioned Programs

As stated in the introduction, we envision our framework
as steps in an optimization process. An application devel-
oper identifies its program hotspots in terms of cache perfor-
mance. Then he uses our framework to measure the locality
of key data structures in an critical code region. Our frame-
work identifies a correct optimization strategy and indicate
to the developer which modifications to make. Finally, the
developer can repeat this process across its program code as
long as he wishes.

As we just stated, our framework does not identify by
itself neither the application’s hotspots nor which data struc-
tures are of most interest. Detecting which functions gen-
erate the most cache misses can easily be achieved by us-
ing one of the numerous existing profiling tools like Intel
VTune [21], Likwid [23] or the one Fujitsu provide on the K
Computer [10]. As for identifying the relevant structures, we
rely on the user to provide us their names. While our tool is
able to list every variable in the program and analyze all of
them at once, the complexity of the reuse distance measure-
ment grows with the number of structures. Assuming that
the code region under study uses few of the numerous vari-
ables existing in the program, considering all of them will
slow down the analysis without any purpose.

Schematically, our framework analyzes the target code in
three phases. First, it extracts from the DWARF debugging
information of the binary under study the location of all the
data structures specified by the user. Since this location in-
formation can require runtime values, it is saved in an ob-
ject table along with a description of the runtime informa-
tion it needs. Second, the application binary is instrumented
by Pin [15]. This instrumentation traces every memory ac-
cess triggered by the target code and identifies which data
structures they corresponds to. This information is outputted
along with the instruction address and the memory location
touched. Finally, our framework reuses this memory trace
to compute locality metrics related to each data structure.
These locality metrics are then used to predict the amount of
cache misses all the possible sector cache configurations will
trigger. Thus, the best sector cache configuration is found.
Figure 3 summaries theses different phases.

4.1 Extracting Data Structures Information from
DWARF

DWARF is the standard debugging information format used
under Linux (which the K Computer uses both on the fron-
tend and the computing nodes). It describes all the functions,
variables and constants in the program, providing enough
information for a debugger to be implemented. The format
organizes its information into a tree of DIEs (Debugging In-
formation Entries), with a top DIE representing the compila-
tion unit and having as children DIEs representing enclosed
types, functions and variables.

Hotspot
detection

Structures/Scope
setup

DWARF reader

Binary
instrumentation

Locality
analysis

Code
modification

Figure 3. Our framework’s analysis and optimization
pipeline. Dashed boxes represent user actions.

Upon startup, the user provides to our framework a de-
scription for each data structure he wants to analyze. Such
description consists of the structure’s name and optionally
its enclosing scope (compilation unit and/or enclosing func-
tion). Our framework then uses these description to create
an object table. This table associates each structure to the
virtual memory regions it occupies, so that the tracing phase
can identify if a memory access touches a structure.

To find each data structure location, our tool scans recur-
sively the whole DIE tree. As each DIE is identified by a tag,
telling if it is a function, a variable or anything else, finding
the structure DIE only requires to filter the evaluated nodes
using the information the user gave. In its present state, our
tool only supports identifying arrays, as the sector cache API
can only work on such structures. DWARF identifies arrays
using the DW_tag_array_type. This type of DIE contains
the basic type (type of one element), a location expression
and a list of DIEs for each of its dimensions, giving each
dimension size if it can be computed statically. While com-
puting the size of such array is easy given this information,
the location expression giving the starting address of the ar-
ray can require work at during the application execution.

DWARF defines a location expression as a list of simple
operations to apply to an integer stack. After execution of
all operations, the stack’s top value is the virtual address
researched. Unfortunately, some of the operations that our
tool might encounter require pushing to the stack a machine
register’s value at the entry point of the enclosing function.
DWARF uses this kind of location expressions to represent
for example a parameter whose starting address was pushed
into the stack when calling a function. In this case, resolving
the location requires knowledge of the stack pointer value
and an access to the memory of the process at this address.

When our tool cannot resolve the location expression of
a structure statically, the location expression is saved along
with a list of the machine registers required for its evaluation.

4.2 Tracing structure accesses
Along with the data structures description, the user provides
our tool with a tracing scope. This scope defines the instruc-
tions to take into account when measuring the structures’
locality. Limiting the tracing to a small part of the applica-
tion allows the user to optimize each application hotspot in-
dependently, as the sector cache allows it without cost. The
tracing scope is defined as either a function or a range of
source lines. By default, our tool only traces the instructions
of the top-level scope, not the code that could be called from
it. This greatly reduce the number of instructions traced and
thus limit the cost of the trace. If needed, the user can still
activate a full instrumentation.

Our tool uses the binary instrumentation framework
Pin [15] to modify the target application’s executable. For
each instrumented instruction triggering a memory access,
our code collects the necessary register values (for location
expressions) along with the address and the size of the mem-
ory access.

Two kinds of data structure require special handling: dy-
namically allocated arrays and pointer function arguments.
To identify which memory addresses belong to a dynami-
cally allocated structure, our tool uses the following steps.
First, the memory address of the stack or global pointer iden-
tifying the structure is saved, and tagged as belonging to a
given variable. Second, every function of the malloc fam-
ily is traced. On each call, our framework remembers the
newly allocated area and the memory address it is written
to. It then compares this address to already tagged locations.
If a positive match is found, the newly allocated memory is
tagged accordingly. In other words, our tool iteratively as-
sociates allocated memory to already known variable loca-
tions by monitoring the values written inside. Of course, this
identification assumes that the only values written to inside
a pointer are memory addresses. In practice, this limitation
is rarely an issue.

Unfortunately, pointers as function parameters are not as
easy to handle. For such variables, the DWARF information
might not contain the size of memory region pointed to, even
if it is known during compilation by the compiler. In such
event, our tool informs the user of missing information and
recommends him to use a scope higher in the execution path
for tracing.

5. Locality Analysis
In this phase, our framework uses the information of the
previous step to compute different locality metrics. In its
current state, all of these metrics are derived from the notion
of reuse distance.

In its original definition, this distance measure the reuse
potential of a memory access by relating it to the previous
reference to the same location. More precisely, a memory
access to location l has a reuse distance d if the number of
distinct references since the last access to l is d. Assuming

a fully-associative cache with a perfect LRU eviction policy,
this metric captures precisely which memory references will
trigger a cache miss. Indeed, with a cache of size C, any
memory access with a distance d > C will be misses, as the
memory location was evicted from cache since its previous
reference.

While originally developed for the study of virtual mem-
ory systems by Mattson et al. [16] in 1970, reuse distance
has since be applied successfully in the performance anal-
ysis and optimization of numerous domains. Many works
used it to estimate cache misses [2, 9] or to direct data reor-
ganisation by the compiler [3].

5.1 Conditional Reuse Distance
Our objective in this work is to be able to identify if, when a
data structure is pushed into sector 1, the performance of the
program improves. This involves determining two kind of
localities: the locality of a structure by itself (i.e. the amount
of cache misses it will trigger if alone in sector 1) and the
locality of all the other memory accesses. To do so, we start
by defining the conditional reuse distance (CRD): a memory
access to location l has a reuse distance d if the number
of distinct references satisfying a condition c since the last
access to l is d.

We will use this conditional reuse distance to measure
these two classes of locality. First, for a given data structure
s occupying the set of addresses M and a memory access
a ∈ M , the isolated distance of a is its CRD with the
condition: ∈ M . In other words, only memory accesses
touching the same structure are taken into account in the
reuse distance computation. Such reuse distance gives us the
amount of cache misses a structure will trigger by itself if it
was isolated in sector 1. Second, for all accesses not touching
s, we compute their CRD with condition: 6∈M (all accesses
that not touching s). This gives us the cache misses triggered
by the rest of the application if we only isolate s in sector
1, all other accesses going in sector 0. Both measures are
required to compute the amount of cache misses triggered
by a sector cache configuration with only one data structure
isolated.

As previous works already discovered [7, 8], a small set
of instructions can sometimes be responsible for numerous
cache misses, due to the poor locality of their accesses. To
take this into account, we measure an infinity ratio for each
instruction. This ration measure the amount of accesses done
by an instruction that have an infinite reuse distance: the
access is the first to a location, or its reuse distance is greater
than the cache capacity. Such accesses always trigger cache
misses. Thus, instruction with a high infinity ratio have poor
locality and could be improved by being replaced with their
non-temporal version.

Our framework stores the two kinds of CRD as his-
tograms associated with a given structure, while the infinity
ratio is stored on a per instruction basis. Overall, for S struc-

tures analyzed, 2∗S+1 CRD are computed, and only S+1
for each memory access traced by our framework.

5.2 Implementation
This subsection describes the algorithm computing for each
memory access traced by our instrumentation phase, the
associated reuse distances.

To compute a reuse distance, our tool implement one of
fastest algorithm known [19]. This algorithm relies on two
data structures: an hash table and a splay tree (balanced
binary tree). The hash table maps memory references to the
time of their last access. The splay tree is used to register
one node per unique location, sorted by their timestamps.
To help compute the reuse distance of a memory access,
each node of the tree keeps track of the size of its subtrees.
Thus, counting the number of distinct locations between two
access to a memory reference is the process of traversing the
tree from the root to the node of that reference, accumulating
the sizes of the subtrees containing bigger timestamps than
the research access. Algorithm 1 give a pseudo-code for this
distance computation.

Algorithm 1 Reuse distance of a memory access by tree
traversal.
Input: T, c: a binary tree and a timestamp.
Output: d: number of nodes with timestamps > c.
cur ← T.root
d← 0
loop

if c > cur.timestamp then
cur ← cur.right

else if c < cur.timstamp then
d← d+ 1
if cur.right 6= null then

d← d+ cur.right.size
end if
cur ← cur.left

else
if cur.right 6= null then

d← d+ cur.right.size
end if
return d

end if
end loop

With such algorithm, computing a conditional reuse dis-
tance is just a matter of choosing which memory locations
to store in the splay tree. Consequently, the algorithm to an-
alyze the locality of our application simply scans through
all structures, checking if the tracing phase identified it as
touching each of them. If the access is inside the structure, it
then computes its isolated reuse distance and saves it in the
corresponding histogram. The memory location is added to
the splay tree, and the last timestamp to this location is up-
dated in the corresponding hash map. Otherwise, the reuse

distance for all other accesses is computed in the same fash-
ion. Finally, the traditional definition of the reuse distance is
computed (taking into account all accesses) and used to com-
pute the infinity ratio of the current instruction. Algorithm 2
gives a pseudo code for this instrumentation.

Algorithm 2 Tracing algorithm executed for every memory
access made by an instrumented instruction.
Input: A: this access address, pc the program counter, T the

structure table, c this access timestamp.
for all S in T do

if A ∈ S then
d← UPDATE(c,S.ihash,S.itree,A)
S.ihistogram[d]++

else
d← UPDATE(c,S.ohash,S.otree,A)
S.ohistogram[d]++

end if
end for
d← UPDATE(c,All.hash,All.tree,A)
All.histogram[d]++
All.infinityR[pc].count++
if d =∞ then

All.infinityR[pc].inf++
end if
function UPDATE(c,H ,T ,A)

d←∞
if A ∈ H then

d← distance(T ,H(A))
delete(T ,H(A))

end if
insert(T ,c,A)
H(A)← c
return d

end function

The complexity of this reuse distance measurement can
be analyzed as the following. For each reference of a trace
of size N , we scan S data structures, and compute one reuse
distance. One additional reuse distance is computed for the
infinity ratio of the current instruction. The reuse distance
algorithm lookups the reference in the hash table in O(1)
and performs at most three traversals: distance computation,
deletion of the reference’s node, insertion of a new one.
Each of these operations has a complexity of O(logM), M
being the number of unique references in the trace. Finally,
insertion inside the histogram costs O(1). Thus, the whole
complexity of the measurement is O(N.S. logM).

Given that we target a single architecture, each reuse
distance analysis is optimized to only remember the amount
of locations that can fit in our target cache, considering that
any access with a distance greater than that will always
trigger a cache miss.

5.3 Identifying Cache Optimization Opportunities
Once the locality analysis is completed, our framework out-
puts each structure’s histograms and the conflict table. From
these we predict the amount of cache misses that a sector
cache configuration will trigger. Let us start by formalizing
our reuse distance and cache misses model.

Let M be the set of memory addresses touched by our
program and T the trace of these memory accesses. We
can express it as a set of pairs (pos, a) with pos ∈ N and
a ∈ M . Let A(s) be the memory addresses of a structure s
analyzed by our experiments. We can now define the reuse
distance as h(m, d): the number of accesses of distance d
in the trace T − (pos, a),∀a ∈ m. That is, we remove from
the trace of memory accesses a number of addresses, while
preserving order, before computing the reuse distance of it.
For future convenience, we will note h0(s, d) = h(A(s), d)
and h1(s, d) = h(M − A(s), d). The former represents the
reuse distance without accesses to a specific data structure
and the latter to the reuse distance of these accesses by
themselves.

Let C0, C1 be respectively the sizes in bytes of Sector
0 and Sector 1 and let s be the data structure in Sector 1.
Then we can express the cache misses we observe in our
experiment as:

Qs(C0, C1) =

∞∑
d=C0+1

h0(s, d) +

∞∑
d=C1+1

h1(s, d)

This equation formalizes the cache miss model we pre-
sented earlier: for a given cache size, any access with a
reuse distance greater than this size will trigger a cache miss.
Computing the amount of cache misses triggered by a sec-
tor cache configuration thus just requires iterating through
both histograms built during the reuse distance analysis and
summing their bins for values higher than the corresponding
cache size.

6. Experimental Results
We now validate our framework by analysing and optimiz-
ing several memory intensive applications. After describing
our general methodology, we will validate our framework
on two aspects. First, we use a custom-built application in-
spired from stencil codes to ensure that the cache behavior
we measure correspond to knowledge we have of the appli-
cation. Since this application is built on purpose, it also gives
us a estimate of the performance improvement we can ex-
pect from using the sector cache. We then analyze and opti-
mize code regions from the NAS Parallel Bencharmks. This
demonstrate that our framework can be applied to standard
HPC codes.

6.1 Methodology
All our experiments follow the optimization process we de-
scribed earlier. First, a performance analysis tool is used on
the K Computer to identify which functions in the applica-
tion are performance hotspots. We specifically measure run-
ning time and L2 cache miss rate of each function. We then
execute our binary instrumentation on the same application,
but compiled on a Linux system with an Intel i7 2760 QM
processor and 8 GiB of RAM. This system is required as
no binary instrumentation framework is able to modify bi-
naries compiled for the SPARC64 VIIIfx architecture of the
K Computer. While the use of a different architecture for
the locality analysis might seem an issue, we argue that us-
ing another architecture should not change in any significant
way the memory accesses that the program code dictates.
Moreover, the reuse distance metric is by design architec-
ture independent. A slight change in ordering of instructions
should not change the global cache requirements of a data
structure neither.

Each function that we identified as an hotspot is thus an-
alyzed by our tool, tracking all arrays touched by the code
(deduced by reading the source). The instrumentation is di-
rected to stop the application after one execution of the func-
tion. After analysis, if our framework identifies that a func-
tion can be optimized, the necessary source code modifica-
tions are made. As we only analyze complete functions here,
these modifications consist of setting the sector cache size
and directing the compiler to push one structure in sector
one.

This code is then recompiled for the K Computer and its
running time and cache miss rate measured again.

6.2 Multigrid Stencil
Our test application makes a simultaneous use of three dif-
ferent matrices that reside in memory to compute the ele-
ments of a result matrix. The input matrices form a multi-
grid structure, it is made of a large matrix (Y × X double-
precision floating point values), a medium-sized matrix (one
fourth of the large matrix size) and a small matrix (one six-
teenth of the large matrix size). The output matrix has the
same size as the large matrix. Each of its elements is a lin-
ear combination of nine points stencils taken from each in-
put matrix at the same coordinates (interpolated for smaller
matrices). This application is interesting for two reasons: it
is extremely memory intensive and each of its matrices has
a different cache size requirement. Our nine points stencil
forms a cross (a center element, the two elements above it,
the two elements on the right, and so on) and it is included in
five lines of a matrix. Thus, in the ideal case, if five lines of
each input matrix can remain in the cache during the com-
putation, the stencil will be computed with a maximal reuse.
This translates into a cache space of X × 8 × 5 bytes for
the large matrix, half of this size for the medium one and
one fourth of this size for the small one. Of course if these

requirements cannot all fit in cache, accesses to each matrix
will thrash accesses to the others. Matrices are named from
the smallest one M1 (X/4 by Y/4) to the biggest M3 (X by
Y), the result matrix is named Mr.

We analyze here the locality of the 3 input matrices. We
chose the matrices sizes for M3 to requires 7MiB in cache,
such that a default cache configuration triggers numerous
cache misses.

1.75Mib 3.5MiB 7MiB ∞

0

5 · 106

1 · 107

M1
M2
M3

Figure 4. Reuse distance histograms for the 3 input matri-
ces of the multigrid stencil. For simplicity, we display dis-
tances bigger than a 12th of the cache. Bins are 256KiB
wide. The last bin is for infinite distances.

After analysis of these reuse distance histograms (Fig-
ure 4), our cache model predicts that isolating the M2 matrix
with a sector cache configuration giving more than 7 ways to
sector 1 would reduce by 23% the amount of cache misses
triggered by one stencil. We applied this optimization to our
application code and compared the resulting program to the
unoptimized one on the K Computer. We compiled a differ-
ent version of the program for each sector cache configura-
tion tested. To also validate that our optimization was among
the best available, we tested every configuration of the sector
cache for every data structure.

Version Stencil Miss Rate (%) Reduction (%)
Unoptimized 2.10 -
M2(5, 7) 1.68 20

M2(1, 11) best 1.62 22
M1(7, 5) best 1.84 12
M3(11, 1) best 2.08 0.1

Table 1. Cache misses reduction: comparison between the
chosen optimization against best configuration for each iso-
lation.

Table 1 gives the resulting cache misses for the different
versions. Notice that the very best configuration available is
for M2 to be isolated in a sector bigger than 7 ways. How-
ever, given the reuse distance histograms we measured, our
cache model does not predict any performance difference be-
tween the two configurations. The fact that we do not take

into account the influence of associativity on cache misses
could explain this small performance difference. Our tool
still achieves a very good optimization of the application.

6.3 NAS Parallel Benchmarks
We analyzed two benchmarks from the Omni OpemMP C
version 2.3 of the NAS Parallel Benchmarks: CG, LU. These
benchmarks were only using one thread. In both cases, sig-
nificant optimizations were found.

Most of the computation time of the CG benchmark is
spent inside the conj_grad function. This function does
not call any other, and is repeated multiple times during the
benchmark’s lifetime. The core of this function is a sparse
matrix-vector product, with most of the memory accesses
touching 3 data structures: the sparse matrix a, the column
index colidx and a dense vector p. We analyzed the locality
of these structure and, unsurprisingly, our framework indi-
cated that the p vector could benefit for isolation using the
sector cache. Indeed, both other structures exhibit streaming
access patterns due to indirect accesses that could impact
negatively the caching of p. Our optimization thus isolates p
in sector 1, with enough space to allow good caching. Such
optimization, adding only two lines to the source code of the
benchmark reduces the execution time of this function by
10%.

Our process to analyze and optimize the LU benchmark
was as follows. First, LU spends almost all of its runtime
in the ssor function. This function contains a loop, calling
successively several subroutines over shared data structures.
Iteratively, these calls solves a system of Navier-Stokes
equations by successive over relaxation, decomposing it into
lower and upper triangular matrices. Overall, eight struc-
tures are of interest here: flux, u, rsd and frct, which are
global arrays used as input and results storage, and a,b,c and
d which are working arrays used across subroutines to hold
partial results (triangular matrices). To analyze this bench-
mark, we configured our framework to trace recursively all
instructions of the ssor function or of any other function
called from it. The resulting analysis identified each of a, b,
c and d to benefit from the sector cache in the same way. The
cache requirements of the other arrays could not fit in any
sector configuration.

While isolating only one of the 4 arrays identified by our
framework only improved by 2% the benchmark’s execution
time, another optimization gave more interesting results. In-
deed, protecting those 4 arrays for streaming accesses to the
other variables of the program by pushing them all together
in sector one proved to be a better optimization. It resulted
in a 8% reduction of execution time of this function. We
should note that, as the ssor function passes these arrays to
some subroutines as parameters, we had to change the sec-
tor cache directives in them to match the actual parameter
names. Overall, code modification added 10 lines of direc-
tives: for each of the 5 functions, one line for sector size and
one for variable isolation. We excluded two functions (rhs

and l2norm) from these modifications, as they do not use
these arrays.

Table 2 describes the exact optimization on each bench-
mark’s functions, and the resulting improvements. Note
that the cache misses reduction reported are direct cache
misses: cache misses triggered by the speculative hardware
prefetcher are ignored.

7. Conclusion and Future Works
We presented a cache analysis and optimization framework
specifically targeted at optimization of HPC application run-
ning on the K Computer and using its cache partitioning
facility. While previous work presented interesting analysis
and optimizations techniques using cache partitioning, we
demonstrated that specific implementation details of the sec-
tor cache rendered such solutions impractical, requiring us to
develop our own environment.

Using state of the art tools in binary instrumentation tech-
niques, we discussed the analysis of the cache requirements
of each data structure of interest inside an application. Be-
cause the sector cache provides dynamic reconfiguration of
the partitioning during execution, we argue that a solution
analyzing independently multiple regions of code and de-
termining the best configuration for each of them is a bet-
ter strategy than whole program analysis. This approach can
still be fast compared to the execution time of the original
benchmark, as the instrumentation is limited to few instruc-
tions of the program (i.e. the rest of the binary executes at
full speed).

By analyzing and optimizing a custom-built application,
we demonstrated that our framework can predict with good
accuracy the cache requirements of each data structure and
suggest valid optimizations. The additional analysis and op-
timization of NAS parallel benchmarks also confirmed the
applicability of our work. Still, our optimization process for
the NAS LU benchmark also illustrates the kind of addi-
tional work that could improve our framework.

First, pushing several data structures inside sector 1 could
be made easier by including in our analysis phase the study
of inter-structures conflicts in cache either by a costly met-
ric similar to the one in Soft-OLP, or simply by detecting
if several objects are loaded in cache during the same time-
frame. Second, while our framework is already capable of
locality analysis over several functions called successively,
it will be interesting to gather reuse histograms per function
while the reuse distance is computed globally. Such analy-
sis could help detect better sector cache configurations from
one function to the next. Third, analysis time could be im-
proved further, either by trading accuracy for speed [25] or
by parallelization on the reuse distance algorithm [4, 18].

Finally, we are also interested in the long term on au-
tomating as much as possible our framework. By automat-
ing we mean integrating a performance measurement tool
to detect performance hotspots, source analysis to extract

Benchmark Function Isolated Variables Sector Size Miss Reduction (%) Runtime Reduction (%)
CG conj_grad p (1,11) 19 10

LU

ssor a,b,c,d

(2,10)

48 8
blts ldz,ldy,ldx,d 75 10
buts d,udx,udy,udz 18 3
jacld a,b,c,d 64 14
jacu a,b,c,d 57 6

Table 2. Optimization of NAS Benchmarks.

from the hotspot identification the data structures’ names
and other necessary information and code transformation at
the end of the pipeline to modify the application without user
intervention. This last step requires in particular a source-to-
source transformation tool and, while an optimization can
be as simple as the insertion of two pragma at the top of a
function, the LU example showed that different function can
have different names for the same memory locations, which
could be more difficult to take into account.

Acknowledgments
Part of the results were obtained by early access to the K
computer at the RIKEN AICS. This work was supported by
the JSPS Grant-in-Aid for JSPS Fellows Number 24.02711.

References
[1] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and

P. Marwedel. Scratchpad memory: design alternative for
cache on-chip memory in embedded systems. In Proceedings
of CODES 2002.

[2] K. Beyls and E. D’Hollander. Reuse distance as a metric for
cache behavior. In Proceedings of PDCS 2001.

[3] E. Bugnion, J. Anderson, T. Mowry, M. Rosenblum, and
M. Lam. Compiler-directed page coloring for multiproces-
sors. ACM SIGOPS Operating Systems Review, 30(5), 1996.

[4] H. Cui, Q. Yi, J. Xue, L. Wang, Y. Yang, and X. Feng. A
highly parallel reuse distance analysis algorithm on gpus. In
Proceedings of IPDPS 2012.

[5] X. Ding, K. Wang, and X. Zhang. ULCC: a user-level facility
for optimizing shared cache performance on multicores. In
Proceedings of PPoPP 2011.

[6] T. M. et al. SPARC64 VIIIfx: A new-generation octocore pro-
cessor for petascale computing. In IEEE Micro, volume 30,
2010.

[7] C. Fang, S. Carr, S. Önder, and Z. Wang. Reuse-distance-
based miss-rate prediction on a per instruction basis. In
Proceedings of MSP 2004, .

[8] C. Fang, S. Carr, S. Önder, and Z. Wang. Path-based reuse
distance analysis. In Proceedings of CC 2006, .

[9] S. Gupta, P. Xiang, Y. Yang, and H. Zhou. Locality princi-
ple revisited: A probability-based quantitative approach. In
Proceedings of IPDPS 2012.

[10] K. Ida, Y. Ohno, S. Inoue, and K. Minami. Performance
profiling and debugging on the K computer. Fujitsu Scientific
and Technical Journal, 48, 2012.

[11] Intel Corporation. Intel architectures optimization reference
manual, 2010.

[12] M. Kandemir, J. Ramanujam, M. Irwin, N. Vijaykrishnan,
I. Kadayif, and A. Parikh. Dynamic management of scratch-
pad memory space. In Proceedings of the Design Automation
Conference 2001.

[13] R. E. Kessler and M. D. Hill. Page placement algorithms for
large real-indexed caches. ACM Transactions on Computer
Systems, 10, 1992.

[14] Q. Lu, J. Lin, X. Ding, Z. Zhang, X. Zhang, and P. Sa-
dayappan. Soft-OLP: Improving hardware cache performance
through software-controlled object-level partitioning. In Pro-
ceedings of PACT 2009.

[15] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. Reddi, and K. Hazelwood. Pin: building cus-
tomized program analysis tools with dynamic instrumenta-
tion. In Proceedings of PLDI 2005.

[16] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evalua-
tion techniques for storage hierarchies. IBM Systems Journal,
9(2), 1970.

[17] H. Miyazaki, Y. Kusano, N. Shinjou, F. Shoji, M. Yokokawa,
and T. Watanabe. Overview of the K Computer system.
Fujitsu Scientific and Technical Journal, 48, 2012.

[18] Q. Niu, J. Dinan, Q. Lu, and P. Sadayappan. PARDA: A fast
parallel reuse distance analysis algorithm. In Proceedings of
IPDPS 2012.

[19] F. Olken. Efficient methods for calculating the success func-
tion of fixed-space replacement policies. Technical report,
Lawrence Berkeley Laboratory, 2009.

[20] S. Perarnau, M. Tchiboukdjian, and G. Huard. Controlling
cache utilization of HPC applications. In Proceedings of ICS
2011.

[21] J. Reinders. VTune Performance Analyzer Essentials. Intel
Press, 2005.

[22] T. Sherwood, B. Calder, and J. S. Emer. Reducing cache
misses using hardware and software page placement. In Pro-
ceedings of ISC 1999.

[23] J. Treibig, G. Hager, and G. Wellein. LIKWID: A lightweight
performance-oriented tool suite for x86 multicore environ-
ments. In Proceedings of PSTI 2010.

[24] M. Verma, S. Steinke, and P. Marwedel. Data partitioning for
maximal scratchpad usage. In Proceedings of ASP-DAC 2003.

[25] Y. Zhong, X. Shen, and C. Ding. Program locality analysis
using reuse distance. ACM Trans. Program. Lang. Syst., 31
(6), 2009.

