
XcalableACC – a Directive-based Language
Extension for Accelerated Parallel Computing

Hitoshi Murai, Masahiro Nakao
and Takehiro Shimosaka

Advanced Institute for Computational Science
RIKEN

Kobe, Japan
Email: {h-murai,masahiro.nakao,tshimoasaka}@riken.jp

Akihiro Tabuchi
Graduate School of Systems
and Information Engineering

University of Tsukuba
Tsukuba, Japan

Email: tabuchi@hpcs.cs.tsukuba.ac.jp

Taisuke Boku and Mitsuhisa Sato
Center for Computational Sciences

University of Tsukuba
Tsukuba, Japan

Email: {taisuke,msato}@cs.tsukuba.ac.jp

I. INTRODUCTION

A type of parallel computer, such as GPU clusters, which is
composed of multiple nodes equipped with accelerator devices
has become a popular HPC platform. In fact, four of the top
ten supercomputers in the latest TOP500 list are of this type.
We call it accelerated parallel computer (APC).

To program APCs, the combination of MPI for distributed-
memory parallelism among nodes and a dedicated language
or tool for offloading works to accelerator devices within a
node (e.g. CUDA for NVIDIA’s GPU) is usually adopted.
However such programming model is complicated and difficult
for most of application programmers, and a easier way to
program APCs is strongly demanded. On the other hand, some
technologies such as Tightly Coupled Accelerators (TCA) [1]
and GPUDirect [2] that enable direct communication between
accelerator devices are recently proposed.

Our research proposes a new language XcalableACC to
meet those demands, which is a combination of two ex-
isting directive-based language extensions, XcalableMP and
OpenACC.

XcalableMP (XMP) [3], developed by the XMP Spec-
ification Working Group of the PC Cluster Consortium, is
a directive-based language extension for C and Fortran to
program distributed-memory parallel computers. Using XMP,
programmers can write parallel programs by inserting simple
directives into their serial programs.

OpenACC [4], developed by Cray, CAPS, NVIDIA and
PGI, is another directive-based language extension designed
to program heterogeneous CPU/accelerator systems. It targets
offloading programs from a host CPU to an attached accelera-
tor device, and has an advantage of portability across operating
systems and various types of host CPUs and accelerators.

XcalableACC (XACC) has features for handling
distributed-memory parallelism, derived from XMP, and
offloading tasks to accelerators, derived from OpenACC, and
two additional functions: data/computation mapping among
multiple accelerators and direct communication between
accelerators.

II. RELATED WORKS

Extensions of PGAS languages [5]–[7] for supporting
accelerators have been proposed but neither of them contain

!"

!"" !#"

!"#$%"&'()*+,-)*.+*)/0#!

!"#$%"&'()*+,-)*.+122#3!
$%&"

'$$"

'(()*+,-(."

!"%04$+2)--3+

&0$500*+122#!

2)--3+

&0$500*+267#!

Fig. 1. Execution Model of XACC for data distribution, offloading, and
communication

features for direct communication between accelerators.

XcalableMP-dev [8] is the predecessor of XACC.
XcalableMP-dev supports its own dedicated directives to pro-
gram GPUs and direct communication between accelerators
while XACC supports OpenACC, which is a standard of
programming accelerators.

III. XCALABLEACC

A. Basic Concept

XACC can be said to be a combination of XMP, OpenACC
and some novel extensions. Each of them has the function as
follows.

• XMP for distributed-memory parallelism

• OpenACC for offloading works to accelerator

• XACC extensions for handling multiple accelerators
and direct communication between accelerators

Fig. 1 shows the basic concept of XACC. An example code
of XACC is given in Fig. 2.

B. Target Architecture

The target of XACC is accelerated parallel computers that
are composed of homogeneous nodes each of which is:

• composed of a host CPU (maybe multi-core) and one
or more attached accelerator devices; and

1 #pragma xmp nodes p(*)
2 #pragma acc device d(*)
3
4 #pragma xmp template t(0:99)
5 #pragma xmp distribute t(block) onto p
6
7 float a[100][100];
8 #pragma xmp align a[i][*] with t(i)
9 #pragma xmp shadow a[1:1][0]

10
11 #pragma acc declare copy(a) layout([*][block]) \
12 shadow([0][1:1]) on_device(d)
13
14 #pragma xmp reflect (a) acc
15
16 #pragma xmp loop (i) on t(i)
17 for (int i = 0; i < 100; i++){
18 #pragma acc kernels loop layout(a[*][j]]) on_device(d)
19 for (int j = 0; j < 100; j++){
20 a[i][j] = ...
21 }
22 }
23
24 ...

Fig. 2. Example Code of XACC

• interconnected via two paths: one is between CPUs,
and the other is between accelerators that allows
accelerators communicate directly with each other.

C. XACC extensions

1) Data/Computation mapping onto multiple accelerators
(two-level distribution):

• The novel on_device clause can be put on some
OpenACC directives (e.g. declare, data, etc.) to
explicitly specify their target device.

• Data and computation are distributed among nodes
by an XMP directive, and further distributed among
accelerators within one node by the layout clause
of the declare and loop directives.

2) Direct Communication between accelerators:

• The XACC runtime system recognizes the arrange-
ment of data in the host or device memory and
autonomously selects the appropriate communication
path for them.

• XMP’s Communication directives, such as reflect,
bcast, and reduction, would apply to data that
reside in device memory if the acc caluse is specified.

D. Implementation

We are implementing Omni XcalableACC as an additional
function of the Omni XMP compiler being developed by
RIKEN AICS and University of Tsukuba. Its primary target
is HA-PACS/TCA [1] in Center for Computational Science,
University of Tsukuba.

IV. PRELIMINARY EVALUATION

We parallelized the Himeno benchmark [9] (size =
128x128x256), which is a typical stencil code, with Omni
XACC to preliminarily evaluate the performance of an XACC

0

80

160

240

320

1 2 4 8 16

!
"
#$
%
#&

'
(
)"
*+
,
-
./

!
0
1!

23&4"#*%$*2%5"6!

XACC (TCA)

OpenACC+MPI (GDR)

Fig. 3. Result of Preliminary Evaluation

program on HA-PACS/TCA. We used gcc-4.7 and CUDA6.0
as a backend compiler, and MVAPICH2-GDR 2.0b as a
communication library. It can be seen from Fig. 3 that the
XACC program using TCA is up to 2.7 times faster than
the OpenACC+MPI(GDR) equivalent. In addition, the SLOC
(source lines of codes) in XACC is about half of that in
OpenACC+MPI(GDR).

V. CONCLUSION

We proposed a directive-based language extension for
accelerated parallel computing, XcalableACC. It is basically
a combination of XcalableMP and OpenACC, and has ad-
vanced features of data/computation mapping onto multiple
accelerators and direct communication between accelerators.
The preliminary evaluation showed that XcalableACC would
be useful to program accelerated parallel computers.

ACKNOWLEDGMENT

The present study is supported in part by the JST/CREST program entitled“Research
and Development on Unified Environment of Accelerated Computing and Interconnection
for Post-Petascale Era” in the research area of“ Development of System Software
Technologies for post-Peta Scale High Performance Computing.”

REFERENCES

[1] T. Hanawa et al., Interconnection Network for Tightly Coupled Acceler-
ators Architecture, High-Performance Interconnects (HOTI), 2013 IEEE
21st Annual Symposium on, pp. 79–82, 2013.

[2] NVIDIA Corporation, NVIDIA GPUDirect, https://developer.nvidia.
com/gpudirect, 2014.

[3] XcalableMP Specification Working Group, XcalableMP Specification
Version 1.2, http://www.xcalablemp.org/download/spec/xmp-spec-1.2.
pdf, 2013.

[4] OpenACC-Standard.org, The OpenACC Application Programming
Interface Version 2.0, http://www.openacc.org/sites/default/files/
OpenACC.2.0a 1.pdf, 2013.

[5] D. Cunningham et al., GPU programming in a high level language:
compiling X10 to CUDA, Proc. 2011 ACM SIGPLAN X10 Workshop
(X10 ’11), New York, NY, USA, 2011

[6] A. Sidelnik et al., Performance Portability with the Chapel Language,
Proc. IEEE 26th International Parallel and Distributed Processing Sym-
posium, pp. 582–594, 2012.

[7] L. Chen et al., Unified parallel C for GPU clusters: Language ex-
tensions and compiler implementation, Languages and Compilers for
Parallel Computing, pp. 151–165, 2011.

[8] J. Lee et al., An Extension of XcalableMP PGAS Language for Multi-
node GPU Clusters, Ninth International Workshop on Algorithms,
Models and Tools for Parallel Computing on Heterogeneous Platforms
(HeteroPar 2011), Bordeaux, France, Aug. 2011.

[9] The Riken Himeno CFD Benchmark, http://accc.riken.jp/2444.htm.

