
HPC Asia 2020@Fukuoka, Japan

Parallelization of All-Pairs-Shortest-Path Algorithms
in Unweighted Graph

Masahiro Nakao, Hitoshi Murai, Mitsuhisa Sato
(RIKEN Center for Computational Science)

2

Background (1/3)

Network topology of a large-scale parallel computer system
affects the overall performance significantly
Supercomputer
Data center

For a parallel application where the communication pattern is
NOT known in advance (e.g. Big data), some researches consider
that a network topology with randomness is effective
The reason is that diameter and average hops of the random
graph are smaller than those of a regular graph (e.g. k-ary n-
cube) due to the small-world effect

3

diameter = 3
ave. hops ≒ 1.89

(n, d) = (10, 3)

Background (2/3)

By describing the calculation node as “vertex” and the network
wiring as “edge”, the network topology is represented as an
unweighted graph with number of vertices (n) and degree (d)
Diameter and average hops are important metrics of network
topology, they are calculated using All-Pairs-Shortest-Path
(APSP) algorithm

4

Background (3/3)

To create a random graph with small
diameter and average hops, Simulated
Annealing (SA) are often used
SA repeats APSP calculation many times
However, the calculation cost of
APSP is very high !!
The complexity is proportional to the
square of the number of vertices (n)

e.g. For a problem (n, d) = (1M, 32), the time
required for one APSP is about 37 hours by the
methods based on BFS on Intel Xeon Gold 6126

5

Objective and a part of results

Our previous research in HPC Asia 2019 provides SA algorithm where
APSP is calculated using Breadth-First Search (BFS-APSP)
BFS-APSP is parallelized by MPI+OpenMP

https://github.com/mnakao/APSP/
You can download programs from

This research introduces another APSP algorithm based on
adjacency matrix (ADJ-APSP), and compares with BFS-APSP
ADJ-APSP is parallelized by MPI+OpenMP for multi-core cluster
ADJ-APSP is parallelized by MPI+CUDA for GPU cluster

BFS-APSP (about 37 hours) → ADJ-APSP (3,880 sec.) →
ADJ-APSP by MPI+OpenMP on 64 CPUs x 12 Cores (6.77 sec.) →
ADJ-APSP by MPI+CUDA on 128 GPUs (0.28 sec.)

6

Agenda

Background
BFS-APSP
ADJ-APSP
Performance
Summary

7

Serial BFS-APSP
BFS can find the hops from one vertex to others
APSP can be obtained by executing BFS from all vertices
Top-down approach is used

The computational complexity of BFS is O(nd).
The computational complexity of BFS-APSP is O(n d) because BFS
is repeated n times

1. 2. 3.

2

8

Parallel BFS-APSP
Multiple BFSs are performed in parallel using MPI from different
vertices, and one BFS is executed using OpenMP
MPI parallelization,
Starting points are assigned to each MPI process evenly
Thus, the maximum number of MPI processes is n
Communication time is small because only scalar values of diameter and
average hops in each MPI process are collected at the end of the program

OpenMP parallelization,
Each OpenMP thread searches not-visited vertices
The implementation requires exclusive control to update own list of not-
visited vertices

9

Agenda

Background
BFS-APSP
ADJ-APSP
Performance
Summary

10

Serial ADJ-APSP(1/3)
Let A be an adjacency matrix of a graph
If the value of an element a_{i, j} in A^k is 1, it means that the
vertex i can reach the vertex j within k hops

(n, d) = (10, 3)

adjacency list

11

Serial ADJ-APSP(1/3)
Let A be an adjacency matrix of a graph
If the value of an element a_{i, j} in A^k is 1, it means that the
vertex i can reach the vertex j within k hops

(n, d) = (10, 3)

for(int i=0;i<n;i++)
 A[0][i] |= A[2][i] | A[3][i] | A[5][i];

12

Serial ADJ-APSP(2/3)

When all elements are 1, the value of k is Diameter
Average hops can be calculated by summing all elements whose
value for a_{i, j} is 0 divided by number of elements (170/90 ≒ 1.89)

90 + 60 + 20 + 0 = 170

13

Serial ADJ-APSP(3/3)

←__builtin_popcountll() or _mm_popcnt_u64()

← Bit OR operation
 (the most time-consuming part)

14

Parallel ADJ-APSP

By dividing "A" vertically,
"A" can be calculated independently by MPI

15

Parallel ADJ-APSP

Same as BFS-APSP, communication
time is very small

OpenMP

OpenMP

Dividing "A" vertically

16

Parallel ADJ-APSP for GPU

in CUDA

__popcnt() in CUDA Math API

17

Comparison between BFS-APSP and ADJ-APSP

BFS-APSP ADJ-APSP

Computational
complexity O(n d) O(n dD/E)

Maximum number of
MPI processes n n/E**

OpenMP exclusive
control

critical
directive (none)

For GPU △
Communication MPI_Allreduce() for scalar x 2

n: vertices
d: degree
D: diameter *
E: bits in element (64)

(we use uint64_t)

* In general, the value of D of graphs with randomness
 is small due to the small-world effect.
** The number of elements of columns in an adjacency matrix

2 2

18

Agenda

Background
BFS-APSP
ADJ-APSP
Performance
Summary

19

Experiment environment
The K computer in RIKEN R-CCS Cygnus in CCS, Univ. of Tsukuba

For MPI+OpenMP versions For MPI+OpenMP versions
For MPI+CUDA version

20

Serial algorithm

(n, d, D) = (50, 4, 5), (1726, 30, 3), and (64Ki, 6, 9) *64Ki is 65,536.
Test programs are available at http://research.nii.ac.jp/graphgolf/
ADJ-APSP is always faster than BFS-APSP
8.08 to 29.49 times better

The K computer Cygnus system

21

Parallel algorithm by OpenMP

(n, d, D) = (64Ki, 6, 9) and (1M, 32, 5)
ADJ-APSP is always faster than BFS-APSP too
Improvement ratio of ADJ-APSP is better than that of BFS-APSP
In case of (64Ki, 6, 9) using 8 threads on the K computer,
improvement ratio of ADJ-APSP is 7.18, and that of BFS-APSP is 3.54
In case of (1M, 32, 5) using 12 threads on Cygnus system,
ADJ-APSP(1threads) : 3,880sec. → ADJ-APSP(12 threads) : 475sec.

The K computer Cygnus system

22

Parallel algorithm by MPI+OpenMP

The number of threads is set to the maximum value
The maximum number of processes in (64Ki, 6, 9) is 65,536 for BFS-
APSP and 1,024 for ADJ-APSP, respectively
The maximum number of processes in (1M, 32, 5) is 1,000,000 for BFS-
APSP and 15,625 for ADJ-APSP, respectively
ADJ-APSP is faster than BFS-APSP in the same number of processes
ADJ-APSP(1CPU) : 475sec. → ADJ-APSP(64CPUs) : 6.77sec.

The K computer Cygnus system

23

Parallel algorithm by MPI+OpenMP

BFS-APSP is faster than ADJ-APSP
in a large number of processes

The K computer

The number of threads is set to the maximum value
The maximum number of processes in (64Ki, 6, 9) is 65,536 for BFS-
APSP and 1,024 for ADJ-APSP, respectively
The maximum number of processes in (1M, 32, 5) is 1,000,000 for BFS-
APSP and 15,625 for ADJ-APSP, respectively
ADJ-APSP is faster than BFS-APSP in the same number of processes
ADJ-APSP(1CPU) : 475sec. → ADJ-APSP(64CPUs) : 6.77 sec.

24

Parallel algorithm by MPI+CUDA

1GPU v.s. 1CPU
(64Ki, 6, 9): 0.751 sec. (1CPU) → 0.061 sec. (1GPU) x 12.6
(1M, 32, 5): 475 sec. (1CPU) → 28.7 sec. (1GPU) x 16.5

Multiple GPUs
(64Ki, 6, 9): 0.0608 sec. (1GPU) → 0.0015 sec. (64GPUs) x 38.4
(1M, 32, 5): 28.7 sec. (1GPU) → 0.28 sec. (128GPUs) x 101.1

1 GPU v.s. 1 CPU Multiple GPUs
475

28.7

25

Parallel algorithm by MPI+CUDA

Since the number of elements of each
column in the adjacency matrix is 8
(=65536/E/128 = 8), the condition for
coalesce access isn't met

Multiple GPUs

1GPU v.s. 1CPU
(64Ki, 6, 9): 0.751 sec. (1CPU) → 0.061 sec. (1GPU) x 12.6
(1M, 32, 5): 475 sec. (1CPU) → 28.7 sec. (1GPU) x 16.5

Multiple GPUs
(64Ki, 6, 9): 0.0608 sec. (1GPU) → 0.0015 sec. (64GPUs) x 38.4
(1M, 32, 5): 28.7 sec. (1GPU) → 0.28 sec. (128GPUs) x 101.1

26

Agenda

Background
BFS-APSP
ADJ-APSP
Performance
Summary

27

Summary

We parallelize BFS-APSP and ADJ-APSP using MPI+OpenMP and
MPI+CUDA
ADJ-APSP has a better performance in the serial algorithm and
threaded algorithm than BFS-APSP on a single CPU
approx. 37hours (BFS, 1core) → 3,880sec. (ADJ, 1core) → 475sec.
(ADJ, 12cores)

However, because the maximum number of processes of BFS-APSP is
larger than that of ADJ-APSP, the performance of BFS-APSP on a
large computational resource may be better than that of ADJ-APSP
We achieved further speedup by parallelizing ADJ-APSP using GPUs
28.7sec. (ADJ, 1GPU) → 0.28 sec.(ADJ, 128GPUs)

