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What is Graph500 ?

Many emerging large-scale data science applications require 
performance-scaling graph algorithms

Background

Overview of BFS algorithm Hybrid-BFS with optimized search direction[3]

Our previous research
We tuned the performance of BFS, which is one of the Graph500 
kernels, on the K computer
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Graph500 was started in 2010 as a competition for evaluating the 
performance of large-scale graph processing
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It took the top spot on Graph500 a total of 10 times from 2014

The K computer stopped operating in August 2019
The supercomputer Fugaku, the successor to the K computer, 
took the top spot on Graph500 in June 2020

Top-down Bottom-up

In the middle of BFS, the number 
of  vert ices  be ing searched 
increases explosively. To reduce 
it, Hybrid-BFS switches from 
top-down at the beginning and 
end of BFS and bottom-up at 
the middle of BFS.
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Distribution with 2D process grid[1]
Divide the adjacency matrix into a 2D 
process grid to reduce communication 
partners. Although omitted in the figure, 
Yoo’ s distribution technique is applied to 
delete a part of the communication[2].

Bitmap-based CSR(BCSR) for adjacency matrix
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We have developed a BCSR that uses bitmaps that can retrieve edge 
information more efficiently and with less memory than general CSR.

row-starts: skip vertices 
that has no edges
bitmap: one bit for each 
ver tex :  represents  the  
offset: represents cumulative # of set bits from the beginning of 
bitmap to the corresponding word boarder

Proposed techniques[4]

Vertex reordering
BFS requires heavy random memory accesses. To increase memory 
access locality, renumbering vertex ID in order of vertex degree.
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Top-Down load balancing
Since length of edge list varies for each vertex, it cause load imbalance 
among threads. To equalize the load, 2-step thread division is performed.
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To promote the overlap between communication and calculation, the 
calculation process is divided so that multiple communications can be 
executed at the same time.
Furthermore, to effectively use a torus-topology network used in 
Supercomputer Fugaku, Blue Gene/Q, and so on, communication is 
performed in two directions.
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