
Performance Evaluation of Supercomputer Fugaku
using Breadth-First Search Benchmark in Graph500

Masahiro Nakao†, Koji Ueno‡, Katsuki Fujisawa* , Yuetsu Kodama†, Mitsuhisa Sato†
 (†RIKEN Center for Computational Science, ‡Fixstars Corporation, * Kyusyu University)

What is Graph500 ?

Many emerging large-scale data science applications require
performance-scaling graph algorithms

Background

Overview of BFS algorithm Hybrid-BFS with optimized search direction[3]

Our previous research
We tuned the performance of BFS, which is one of the Graph500
kernels, on the K computer

[1] S. Beamer et al. ``Distributed memory breadth-first search revisited: Enabling
bottom-up search.’’ In 2013 IEEE International Symposium on Parallel Distributed
Processing, Workshops and Phd Forum, pp. 1618–1627, 2013.
[2] A. Yoo et al. ``A scalable distributed parallel breadth-first search algorithm on
bluegene/l.’’ In SC05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing,
pp. 25–25, Nov 2005.
[3] S. Beamer et al. ``Direction-optimizing breadth-first search.’’ In Proceedings of the
International Conference on High Performance Computing, Networking, Storage and
Analysis, SC12, pp. 12:1–12:10, 2012.
[4] Ueno et a l , ` `Ef f ic ient Breadth-F i rst Search on Massive ly Para l le l and
Distributed-Memory Machines,’’ DOI 10.1007/s41019-016-0024-y, 2017

Graph500 was started in 2010 as a competition for evaluating the
performance of large-scale graph processing

Neural Network Roadway Network Cyber Security SNS

It took the top spot on Graph500 a total of 10 times from 2014

The K computer stopped operating in August 2019
The supercomputer Fugaku, the successor to the K computer,
took the top spot on Graph500 in June 2020

Top-down Bottom-up

In the middle of BFS, the number
of vert ices be ing searched
increases explosively. To reduce
it, Hybrid-BFS switches from
top-down at the beginning and
end of BFS and bottom-up at
the middle of BFS.

0

1

11 0

1

11

Distribution with 2D process grid[1]
Divide the adjacency matrix into a 2D
process grid to reduce communication
partners. Although omitted in the figure,
Yoo’ s distribution technique is applied to
delete a part of the communication[2].

Bitmap-based CSR(BCSR) for adjacency matrix

source

destination

0 0 6 7

4 5 3 1

Edge List BCSR

row-starts

bitmap

offset

destination

0 2 3 4

1 0 0 0 0 0 1 1

0 1 3

4 5 3 1

We have developed a BCSR that uses bitmaps that can retrieve edge
information more efficiently and with less memory than general CSR.

row-starts: skip vertices
that has no edges
bitmap: one bit for each
ver tex : represents the
offset: represents cumulative # of set bits from the beginning of
bitmap to the corresponding word boarder

Proposed techniques[4]

Vertex reordering
BFS requires heavy random memory accesses. To increase memory
access locality, renumbering vertex ID in order of vertex degree.

Before

Data access

Top-Down load balancing
Since length of edge list varies for each vertex, it cause load imbalance
among threads. To equalize the load, 2-step thread division is performed.

vertex has at least one edge or not

T0
T1
T2

Before

T0
T1
T2

After
T0

T0 T1

T1 T2

T2

Reference

Overlapping communication and calculation

P(i,1) P(i,2) P(i,3)

substep

Processing DoneSend

P(i,1) P(i,2) P(i,3)

substep

Before After

To promote the overlap between communication and calculation, the
calculation process is divided so that multiple communications can be
executed at the same time.
Furthermore, to effectively use a torus-topology network used in
Supercomputer Fugaku, Blue Gene/Q, and so on, communication is
performed in two directions.

After

Data access

